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questions, and formulates several hypotheses about their underlying motiva-

tions.
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1 Introduction

Peano is widely known for his contribution to the creation of modern logical

symbolism and to the axiomatisation of arithmetic, in particular, for the axioms

which still bear his name.1 His proof of the impossibility of infinitesimal

segments in geometry has also received the due attention;2 a lot less, if at all,

explored are, on the contrary, Peano’s views on the infinite, an area which,

precisely when Peano was most active mathematically, had experienced major and

1For an overview of Peano’s contributions to logic, see (Kennedy, 1980), (Borga et al., 1985),

(Grattan-Guinness, 2000), Ch. 5, and the 2021 special issue of Philosophia Scientiae ‘Peano and

His School’ edited by P. Cantù and E. Luciano.
2Cf. (Peano, 1892a). For a reconstruction of Peano’s views about the infinitesimals, see

(Ehrlich, 2006), and the more recent (Freguglia, 2021).
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unprecedented breakthroughs, especially thanks to the work of, just to mention a

few names, Cantor, Dedekind, Schröder, Veronese and other mathematicians.3

Recently, Peano’s early conception of a single infinite cardinality has been

scrutinised by (Mancosu, 2016), which, besides showing where the conception

stands in the history of the infinite, also casts ‘Peano’s Principle’ as a bona fide

cardinality principle able to put pressure on the neo-logicist doctrine of the

analyticity of Hume’s Principle.4

(Mancosu, 2016) also lists the different stages of the evolution of Peano’s

conception, and demonstrates that Peano’s ideas became increasingly closer to,

3Cf., again, (Grattan-Guinness, 2000) and (Ferreirós, 2010).
4 Hume’s Principle [HP], taken by (Frege, 1884) to be the correct statement of ‘numerical

identity’ and, as a consequence, of the concept of number, is the universal closure of the following

(second-order) principle:

#x : F (x) = #x : G(x) ↔ F ≈ G

‘the number of F s is equal to the number of Gs if and only if F is equinumerous with G (i.e., if

F s and Gs can be put in a one-to-one correspondence)’. Mancosu has called the formalisation, in

second-order logic, of Peano’s conception of a single infinite cardinality ‘Peano’s Principle’:

#x : F (x) = #x : G(x) ↔ (¬Fin(F ) ∧ ¬Fin(G)) ∨ ((Fin(F ) ∧ Fin(G)) ∧ F ≈ G)

‘the number of F s is equal to the number of Gs if and only if either F and G are infinite or, if

finite, equinumerous’, and discusses it in connection with the ‘good company problem’ for HP, see

(Mancosu, 2016), Ch. 4.
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and from a certain point onwards, indistinguishable from, Cantor’s, but it does

not pin down the exact motivations behind the conception itself, nor does it

explain why Peano, ultimately, endorsed Cantor’s transfinite.5

The purpose of this paper is to fill in the gap, by providing, in a way as far as

possible based on the extant textual sources, a more articulated account of the

evolution of Peano’s ideas, which might also shed light on the potential

significance of Peano’s early conception.

With respect to the latter point, our interpretation of Peano’s doctrine will seek to

establish connections between Peano’s and Galileo’s conceptions. Galileo’s

argument in (Galileo, 1638) was that the tension between the demands of

Euclid’s Axiom (the Part-Whole Principle) and those of the ‘bijection method’

which Galileo himself discusses, and uses in a positive way, maybe for the first

time in the history of mathematics, to establish the equinumerosity of the natural

and square numbers, cannot be overcome.6 As a consequence, Galileo concludes

that one should surrender to the idea that there can be no measure of actually

infinite collections, as there is of finite ones.

That Peano had quandaries comparable to Galileo’s may be deduced both from

his lukewarm adherence to (and, probably, incomplete understanding of) the

Cantorian theory, as well as from his reliance on other kinds of infinitary

intuitions, of a geometrical character, such as those involved in the construction

of the Peano curve. Even when his understanding of the Cantorian theory is

5Cf. (Mancosu, 2016), pp. 165-6, in particular fn. 21.
6Both Euclid’s Axiom and the bijection method are discussed in depth in section 4.1.
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adequate, he seems to want to use the theory in a way which suits best his own

purposes and ‘Galilean’ conception.

The structure of the paper is as follows. In the next section, we make some

preliminary considerations, in §3 we examine the evolution of Peano’s ideas and,

finally, in §4, we consider three possible motivations behind Peano’s conception.

2 Did Peano Have A Definite Conception of the

Infinite?

From reading Peano’s terse statements on the subject, one wonders whether the

Italian mathematician had any determinate conception of the infinite at all;

sometimes, it would rather seem that Peano’s ideas are just insufficiently

developed to be seen as advocating any specific view.

On some authors’ judgement, Peano, while brilliant at spotting inaccuracies, and

in improving on already established results, was poorly armed to devise (or just

propose) a new theory, and rarely took enough care of exposing in full detail, let

alone justifying, conceptions he happened to champion.7 However, there is

(some) evidence that this might not be the case with reference to the question of

the infinite.

To begin with, Peano actively engaged in the lively debates on the nascent theory

7See, for instance, (Grattan-Guinness, 2000), p. 221, and Agazzi’s introduction to (Borga

et al., 1985), p. 7. For a different assessment of the significance of Peano’s work, see (Rodriguez-

Consuegra, 1991), especially the beginning of Ch. 3.
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of sets, and on infinitesimals, and relentlessly discussed aspects of these topics

with Cantor, Russell, Frege, Veronese and other mathematicians.8 Moreover, as

already mentioned, Peano forcefully opposed Veronese’s (geometrical)

infinitesimals, by producing a (purported) proof of their inconsistency,9 a fact

which, considered on its own, already demonstrates that he was, at least, willing

to go to great lengths to understand questions about the nature of the infinite, both

philosophically and mathematically.

Peano’s ideas gradually became more and more akin to Cantor’s, to the point that

no traces of his earlier conception can be found in later work. What motivated

such a noticeable change of mind? We believe that Peano became convinced of

the intrinsic weakness of the alternatives to Cantor’s conception, including his

own, precisely as a consequence of his engagement in the foundational debates

which were hosted by, among other journals, his Rivista di Matematica. The

soundness of this interpretation is further corroborated by the content of Peano’s

correspondence with Cantor in the year 1895, which, in our view, proved

instrumental for Peano’s ‘conversion’ to the Cantorian approach as much as,

eventually, his collaboration with the arguably most set-theoretically-minded

member of his school, Giulio Vivanti.

8Traces of such discussions may be found in, among other works, the many letters that Peano

exchanged with his mathematical interlocutors, including Cantor (see later, section 3.2). Almost all

of Cantor’s letters to Peano may be found in (Cantor, 1990). The correspondence between Peano

and other mathematicians is reproduced in (Peano, 2008).
9See fn. 2 and section 4.3 of the present paper.
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However, even after inspecting much primary and secondary literature, as we

have done in this paper, the full motivations behind Peano’s early conception and

the shift to the Cantorian conception, still appear, to some extent, mysterious, but

the interpretative hypotheses we shall formulate in §4, will provide us with, at

least, some clues.

3 The Evolution of Peano’s Conception

In this section we follow closely the evolution of Peano’s ideas between 1891 and

the turn of the century. For this, we avail ourselves of three fundamental textual

sources:

1. Peano’s own articles, in particular, (Peano, 1891), where his early

conception of the infinite is first formulated, and (Peano, 1892a);

2. Peano’s 1895 correspondence with Cantor, consisting of six letters from

Cantor to Peano;10

3. the first three volumes (and sections thereof) of his Formulaire de

mathématiques, published in rapid succession between 1895 and 1901

((Peano, 1895), then (Peano, 1897), (Peano, 1898), (Peano, 1899), (Peano,

1901)), where both Peano’s early and ‘Cantorian’ conception may be found.

10Peano’s letters to Cantor are no longer available, as confirmed, in a private email to the authors

(23/02/2022), by Clara Silvia Roero, who has recently re-edited Peano’s works and correspondence

(cf., again, (Peano, 2008)).
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We close this section by briefly discussing Vivanti’s role in the evolution of

Peano’s ideas.

3.1 ‘On the Concept of Number’

In 1891, Peano published his famous article ‘Sul concetto di numero’ (‘On the

Concept of Number’) in the Rivista di matematica, the journal he had founded the

same year.

Two years after Arithmetices principia, nova methodo exposita (Peano, 1889), in

which Peano first presented his axioms of the natural numbers, in this work,

among other things, he simplifies his notation, demonstrates that his famous five

postulates of the natural numbers are mutually independent, and builds a more

general axiomatic system of numbers by also taking into account relative,

rational and real numbers.11

(Peano, 1891) is Peano’s first endeavour to deal explicitly with the infinite. In §9,

he defines a function, ‘num a’, whose domain consists of ‘classes’ (denoted

a, b, c, ..., u, ...), and whose values are the ‘cardinalities’ of these classes; in

Peano’s own words, num a is ‘the number of elements of the class a’12.

Now, if a is a finite class, then num a is just the (finite) number of its elements,

i.e., a natural number n. But then, Peano states that num a is not always a

11Cf. (Borga et al., 1985), pp. 79-94, and (Rodriguez-Consuegra, 1991), Ch. 3.2.
12[Con num a intenderemo “il numero degli individui della classe a” (p. 100).] Page numbers

of (Peano, 1891) are those of (Peano, 1959). The English translations of Peano’s quotes are all

ours.
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natural number, since the set of natural numbers does not include ‘zero’ and

‘infinity’.13 This is the first time Peano mentions the possibility that a class a be

empty, or infinite (that is, that num a = ∞).14

We wish to say something more substantial about ‘∞’. Peano seems to take it to

be a bona fide ‘infinite quantity’, which can be manipulated like any other (finite)

quantity, as is clear from the propositions 3 and 4 in §9:

3. If a and b are two non-empty and finite classes having no element

in common, then the number of elements of the set of the two classes

a and b is equal to the sum of the number of as and bs.15

In 3. above, Peano is stating, in modern set-theoretic notation, that if two sets a

and b are disjoint, then the number of the elements of a and b is equal to the

number of the elements of a ∪ b. Peano, then, notes that the proposition holds

even if one of the two classes, and even both, contain infinite elements; but now,

we have, as a consequence, that:

x+∞ = ∞+ x = ∞ (1)

13[Data una classe a non sempre num(a) è un N , poiché N non comprende né lo zero, né

l’infinito (p. 101).]
14[Il segno num è un segno d’operazione che ad ogni classe fa corrispondere o un N , o lo 0, o

l’∞ (p. 102).]
15[Essendo a e b due classi non nulle e finite, non aventi alcun individuo comune, allora il

numero degli individui appartenenti all’insieme delle due classi a e b vale la somma dei numeri

degli a e dei b (p. 102).]
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where x is a finite quantity, and

∞+∞ = ∞. (2)

Immediately afterwards, he says: “4. If the classes a and b are such that the

second is contained in the first, and the class b is non-empty, and is not equal to

a, and if the number of as is finite, then the number of bs is also finite, and is less

than the number of as.”16

Then he observes that: ‘this proposition ceases to be valid if num a = ∞’.17

Propositions 3 and 4 also demonstrate that ‘∞’ is taken by Peano to be different

from Cantor’s ‘ω’, since, as is known, by Cantor’s conception, ω + n ̸= n+ ω.

However, on the grounds of the arithmetical laws outlined in (1) and (2), one

could be tempted to view ‘∞’ as being equivalent to ‘ℵ0’. But this would be a

hasty conclusion. In section 4.3, we shall see that Peano’s own intepretation of

his ‘infinitary numbers’ does not automatically sanction the equivalence between

his ‘∞’ and ‘ℵ0’.

One further comment is in order. Proposition 4 states that infinite classes could

contain proper infinite subclasses. This implies, among other things, that

‘standard’ part-whole relationships cease to be valid in the infinite, a fact which,

in turn, may have had some bearings on the development of Peano’s ideas.

16[Se delle classi a e b la seconda è contenuta nella prima, e la classe b non è nulla, e non è

eguale ad a, e se il numero degli a è finito, allora anche il numero dei b è finito, ed è minore del

numero degli a (p. 101).]
17[Questa proposizione cessa di esistere se num a = ∞ (p. 101).]
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3.2 The Cantor-Peano Correspondence

As already mentioned, Peano’s early conception of the infinite is gradually

modified, and then, by 1899, definitively replaced by Cantor’s theory of the

transfinite. What, ultimately, led Peano to change his mind remains an open

question. Although the evidence is insufficient, we conjecture that the

correspondence between Peano and Cantor, in the year 1895, proved instrumental

in that respect.

In what follows, we review salient parts of the discussion Peano entertained with

Cantor that are relevant to our purposes; as already noted, one side of the

correspondence (from Peano to Cantor) is not extant, so Peano’s comments and

answers can only be, very approximately, deduced from the responses of his

German colleague.18 Cantor’s letters cover the following subjects:

1. Cantor’s articles that Peano intends to publish in his Rivista Matematica;

2. Cantor’s distaste with Veronese’s theory of actual infinitesimals;

3. Peano’s request for explanations about Cantor’s elusive definition of

‘cardinal number’

In particular, (2) and (3) are fundamental, in our view, for the evolution of

Peano’s ideas on the infinite. Let’s examine them in more detail.
18Cantor’s letters to Peano examined in the present work are all collected in the Meschkowski

edition of Cantor’s letters, (Cantor, 1990), pp. 359ff. (n. 143-147). An overview of the contents

of the Cantor-Peano correspondence is in (Kennedy, 1980), pp. 87-90.
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As far as (2) is concerned, in the two letters of, respectively, July 27 and July 28,

1895, the discussion focuses on the conflict between Cantor’s and Veronese’s

theories. On the German mathematician’s view, what Veronese called ‘ordered

groups’ were just a plagiarism of Cantor’s ‘simply ordered sets’. But then, Cantor

points out what he thinks is the mistake that Veronese has made in trying to

automatically extend the arithmetic of natural numbers to infinite numbers. As

Cantor observes, in two passages of the July 27 letter:

But if it is correct that his ∞1 = ω +∗ ω, his assertion that:

2 · ∞1 = ∞1 · 2

must be incorrect! [...] Anyway, his [Veronese’s, our note] ‘infinite

numbers’ seem tenable to me only if they are identified with some of

my ‘transfinite order-types’. In this case, however, they lack the law

of commutativity for addition and multiplication (in general) on

which he [Veronese, our note] lays so much stress.19

We do not know the content of Peano’s answer; in any case, on Cantor’s own

impulse (28 July, 1895 letter), the 27 July letter was published by Peano in the

19[Jedenfalls scheinen mir seine ”unendlichen Zahlen” nur dann haltbar, wenn sie mit gewißen

von meinen "transfiniten Ordnungstypen” identificirt werden. In diesem Falle fehlt ihnen aber

das Gesetz der Commutabilität bei der Addition und Multiplication (im Allgemeinen), worauf er

solchen Nachdruck legt ((Cantor, 1990), p. 360)]. The English translation is ours.
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Rivista di Matematica.20 So, it is imaginable that Cantor had managed to

convince Peano of the correctness of his arguments.

As far as (3) is concerned, in the subsequent letters, the conversation between the

two mathematicians turns to consider Peano’s qualms about Cantor’s definition of

‘cardinal number’. This can be safely deduced from Cantor’s September 14, 1895

letter, in which Cantor tries to clarify some notions contained in section 5 of

(Cantor, 1895). From what Cantor says, it is clear that Peano was unsure about

Cantor’s notion of ‘finite cardinal number’ and about how Cantor introduced the

induction principle, and asked his colleague for clarifications.

In the 21 September, 1895 letter, Cantor quotes a sentence written by Peano in his

response to Cantor’s previous letter: ‘Where can one find the definition of finite

cardinal numbers?’,21 a clear sign that Cantor’s previous letter was not entirely

clarificatory, or, in any case, that Peano found Cantor’s definitions

unconvincing.22

Therefore, what seems to be likely is that, as a consequence of the clarifications

Cantor gave Peano (and possibly also of Cantor’s forceful rejection of Veronese’s

theory?), Peano started considering Cantor’s transfinite the only correct

conception of the infinite, and Cantor’s theory of cardinal numbers pretty much

definitive.23 If in 1891 he had chosen not to fully adhere to Cantor’s theory - or

20In the journal’s August issue.
21[Où est ce que l’on trouve la definition der endlichen Cardinalzahlen? ((Cantor, 1990), p.

365)].
22We thank an anonymous reviewer for drawing our attention to this possibility.
23However, Peano had already independently attempted to dash Veronese’s conception in
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simply not to explore it in depth - now he had further material at hand, including

Cantor’s clarificatory statements, which could reorient his views, a fact which

would soon reflect on the Formulaire, where the theory of the transfinite is

gradually prioritised.

3.3 The Infinite in the Formulaire

We finally turn to survey, very briefly, the modifications of Peano’s conception as

can be found in the volumes (editions) of Peano’s Formulaire de

mathématiques.24 As said at the beginning, these have already been briefly taken

into account by Paolo Mancosu in (Mancosu, 2016);25 what follows aims to

expand on, and complement, Mancosu’s account.

The evolution of Peano’s ideas on the infinite in the Formulaire spans a period of

4 years, and ends in 1899, when all traces of Peano’s early conception disappear,

and Cantor’s transfinite ultimately takes over.

The first volume ((Peano, 1895)) saw the collaboration of other Italian

mathematicians, such as G. Vailati, F. Castellano, G. Vivanti, R. Bettazzi. Of

particular importance for our purposes are sections V and VI, written,

(Peano, 1892a) and (Peano, 1892b) (but see our comments in section 4.3). For Peano’s assessment

of Veronese’s theory, see (Fisher, 1994) and (Cantù, 1999).
24All the volumes of the Formulaire appeared as supplements to issues of the Rivista di

Matematica between 1895 and 1908. For an overview of the plan and evolution of this work, see

the exhaustive (Cassina, 1955).
25See fn. 5.
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respectively, by Peano and Giulio Vivanti; the latter, among other things, had

taken part in the debate with Bettazzi on the infinitesimals hosted by the Rivista

in the years 1891-1892.26

In section V of (Peano, 1895), entitled ‘Classes de nombres’, we find again the

mentioning of just one infinite cardinality, ‘∞’, which is now explicitly defined as

one of the possible values of num u, where u is a class, as follows:27

4. num u = ∞ ↔ num u /∈ N0

Then Peano explains that num u can take only three values:

5. num u = n ∈ N ∨ 0 ∨∞

Moreover, ‘∞’, in definition 6, is, again, characterised as enjoying commutativity:

6. a ∈ N0, a+∞ = ∞+ a = ∞+∞ = ∞ and a < ∞

On the other hand, section VI, due to Vivanti, not to Peano, introduces, and uses,

the symbols ‘Nc’ and ‘Ntransf ’, denoting, respectively, Cantor’s cardinals and

ordinals, and deals with the corresponding set-theoretic notions. Therefore, in

1895, Peano did not entertain ideas much different from those appeared in

(Peano, 1891), i.e. he did not subscribe to Cantor’s views, while (Peano, 1895)’s

26The debate is accurately reconstructed in (Ehrlich, 2006), pp. 75-101.
27In the text of formulas (4)-(6) we have, for the sake of simplicity, chosen not to adopt Peano’s

original notation, but the modern one.
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section VI, composed by Vivanti, which mentions Cantor’s cardinals and

ordinals, has no immediate connection with the one composed by Peano. This is

consistent with our hypothesis that the correspondence with Cantor may have led

Peano to change his mind after the publication of (Peano, 1895), which, in any

case, must have been drafted well before 1895.

The second volume of the Formulaire consists of three parts, each published one

year apart from the other, following the editorial plan below:

• §1, Logique mathématique (Peano, 1897);

• §2, Arithmétique (Peano, 1898)

• §3 (untitled) (Peano, 1899)

(Peano, 1898) contains the first manifestation of Cantor’s theory in Peano’s

writings. Peano says:

Here we define another idea, indicated by the sign Nc′ similar to the

previous one, indicated by num, but not identical. This definition is

expressed by the only signs of logic (§1); it is therefore independent

of the primitive ideas N0,+, 0. We could start arithmetic here. P211

expresses the coincidence of the signs num and Nc′ when one deals

with finite classes. But we will have for example:

num N = num R+, because the classes N and R+ are both

infinite;28 but Nc′ N < Nc′ R+, because the power of N is less than

28In the original text, Peano uses the symbols N and Q, to denote, respectively, the set of the
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the power of R+. Mr. Cantor indicated the power of a by a (See

RdM. A. 1895 p.13029), a notation that cannot be adopted in the

Formulaire. M. Vivanti in F1 VII §2 P1 [section VI of (Peano, 1895),

our note] has replaced it with Nc′ a “the cardinal number of a.”.30

From the quote above, it seems clear that Peano is beginning to change his mind,

and gradually converting to Cantor’s theory, although he still keeps mentioning

both conceptions: Nc′, denoting Cantor’s cardinal numbers, now appears

alongside num as a symbol of ‘cardinality’.

(Peano, 1899) marks one further transformation of Peano’s conception. In that

work, for the first time, Peano ‘merges’ the symbols num and Nc′ into a unique,

and new, symbol, ‘Num’. The Num’s are now nothing but Cantor’s transfinite

natural and of the positive real numbers; in our translation, we have, for simplicity, replaced N and

Q with the modern N and R+.
29The reference, here, is to (Peano, 1895), p. 130.
30[Nous définissons ici une autre idée, indiquée par le signe “Nc′” semblable à la précédente,

indiqueée par “num”, mais non identique. Cette définition est exprimée par les seules signes de

logique (§1); elle est donc indépendante des idées primitives N0,+, 0. On pourrait commencer ici

l’Arithmétique. La P211 exprime la coincidence des signes num et Nc′ lorsqu’il s’agit de classes

finies. Mais on aura par exemple: num N = num R+, car les classes N et R+ sont toutes les

deux infinies; mais Nc′ N < Nc′ R+, car la puissance des N est plus petite que la puissance des

R+. M. Cantor a indiqué la puissance de a par a (Cfr. RdM. a. 1895 p.130), notation qu’on ne

peut pas adopter dans le Formulaire. M. Vivanti dans F1 VII §2 P1 l’a remplacée par Nc′ a "le

nombre cardinal des a”. ((Peano, 1898), p. 39)].
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cardinalities, an ‘expansion’ of Peano’s former num subtly revealed by the

change of notation. From (Peano, 1899) onwards, thus, Peano seems to fully

adhere to Cantor’s theory.

In the Formulaire’s third volume, (Peano, 1901), in the Num section, Peano,

finally, explains:

Num′Cls means “the number of a class”. These numbers coincide

with the [elements of] N0 for the finite classes; G. Cantor calls them

“cardinal numbers”. In F 1895 the symbol “Nc” was introduced to

represent them [again, a reference to Vivanti’s section VI of (Peano,

1895)].31

Thus, already by 1901, and then in the subsequent volumes of the Formulaire

(1903, 1908), any significant distinction between Peano’s and Cantor’s

conceptions disappears, and Peano’s early conception of the infinite is only a

distant memory.

3.4 Enter Vivanti

We have seen that Giulio Vivanti was involved in the writing of the Formulario,

and we have cursorily mentioned that he interacted with Bettazzi on the issue of

the existence of actual infinitesimals.32 Now, his role with respect to the

31[Num′Cls signifie “le nombre d’une classe”. Ces nombres coïncident avec les N0 pour les

classes finies; G. Cantor les appelle “nombres cardinaux”. Dans F1895 on a introduit le symbole

“Nc” pour les représenter. ((Peano, 1901), p. 70)]
32Cf. fn. 26.
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evolution of Peano’s ideas might have been equally prominent. Indeed, one could

even conjecture that the transformation of Peano’s ideas was, directly or

indirectly, also due to Vivanti’s advice.

This claim seems to be supported by, at least, two main reasons. The first is that

Vivanti was acknowledged to be, at the time, as one of the main experts of

(Cantorian) set theory. Herbert Meschkowski sharply expresses this fact in a note

following Cantor’s 3 December, 1885 letter to Vivanti:

The number of mathematicians who around 1885 had confronted

with Cantor’s doctrine was still very small; the young Italian Vivanti

belonged to them. [...] Vivanti’s works on set theory [...] had,

moreover, contributed to make Cantor’s theory known in Italy.33

((Cantor, 1990), p. 251)

Indeed, as explained by Meschkowski, Vivanti and Cantor corresponded with

each other for a decade (1885-1895). As a main correspondent of Cantor’s, and

early practitioners of Cantorian set theory, Vivanti must have realised the

potential, and overriding strength, of the Cantorian theory compared to other

conceptions of the infinite.

In the context of the debate on the infinitesimals appeared in the Rivista di

Matematica, Vivanti had, significantly, stood out as an advocate of Cantor’s

conception against Bettazzi. At the same time, as evidenced by (Vivanti, 1891)

and (Vivanti, 1895), Vivanti never held the view that theories of infinitesimals

33The translation is ours.
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were, in the least, inconsistent.

In their exchange on the transfinite, Vivanti and Cantor dealt with a very broad

range of themes, spanning both mathematical and philosophical aspects of set

theory, as, for instance, in Cantor’s 1886 letter, which would, subsequently,

become part of Cantor’s Mitteilungen zur Lehre vom Transfiniten.34

In 1893, Vivanti insisted with Cantor that the latter’s attempts to expel actual

infinitesimals from mathematics were doomed to failure, as he argued that du

Boys-Reymond’s use of infinitely large and small quantities was perfectly

consistent with the concept of number. Cantor was equally harsh in rebutting

Vivanti’s comments.35

Coming to the fruits of Vivanti’s lasting collaboration with Peano, this included

an early ‘Teoria di gruppi di punti’, a work on point sets whose publication

preceded that of the Formulario’s first edition. Moreover, Vivanti had already

reviewed (Peano, 1892a) after its publication and, using his wide expertise of set

theory, corrected Peano on a few points.36 Subsequently, as we know, Vivanti

was entrusted by Peano of the writing of the section on the ‘Teoria degli insiemi’

(‘Set theory’) for the 1895 version of the Formulario.

What is also worth mentioning is that Vivanti actively fostered the exchange of

letters between Cantor and Peano, as can be gleaned, for instance, by the 1893

letter from Cantor to Vivanti which would then be published in the Rivista di

34(Cantor, 1887), in (Cantor, 1932), pp. 409-411.
35Cf. Cantor’s 13.12.1893 letter to Vivanti (fac-simile) reproduced in (Cantor, 1990), pp. 514ff.
36Cf. §4.3.

20



Matematica.37 The correspondence between Peano and Cantor, as we already

know, started two years later, in 1895.38

To sum up, it is plausible to conjecture that Peano’s main ‘set-theoretic’

collaborator, Vivanti, sought to steer Peano’s ideas, so to speak, towards the

set-theoretic conception. In particular, Vivanti may not only have been the main

connection between Peano and Cantor, but also between Peano and a (more)

correct understanding of set theory.

4 Interpretations of Peano’s Conception

In this section, we turn to examine the issue of what may have motivated Peano’s

early conception of the infinite, and discuss further textual sources which might

help us better understand the evolution of Peano’s ideas.

We will consider three main potential motivations: (1) the first is that, like Galileo

before him, Peano was not fully convinced of the correctness of the ‘bijection

method’ vis-à-vis Euclid’s Axiom (the Part-Whole Principle); (2) the second,

also of a markedly Galilean character, is that Peano’s work on space-filling curves

may have suggested to him that Cantor’s notion of cardinality was not suitable for

all mathematical contexts; 3) a third possible motivation is that Peano assumed

that (the bulk of) Cantor’s theory of the transfinite could be used to suit his own

purposes, or even that Cantor’s theory was consistent with his own conception.

37Cf. (Cantor, 1990), p. 505.
38(Kennedy, 1980), p. 87-90.
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We examine, respectively, (1) in §4.1, (2) in §4.2, and (3) in §4.3.

4.1 Between Galileo and Euclid

In his Dialogues Concerning Two New Sciences (1638), Galileo came to express

skepticism about the possibility of comparing the sizes of infinite ‘collections’.

In the work’s First Day, Galileo’s spokesperson, Salviati, proposes to compare

the sizes of infinite collections of objects by checking that each object in one

collection is uniquely matched by an object in the other one. More specifically,

Salviati proposes to compare square with natural numbers through a ‘mapping

function’, n 7→ n2, which associates to each natural number its square number:

0 ↔ 0

1 ↔ 1

2 ↔ 4

3 ↔ 9

.. ↔ ..

Salviati and his interlocutor, Sagredo, agree that, using this method, it must be

concluded that there are as many natural numbers as square numbers (that is, that

s(N) = s(S), where s(X) means ‘size of X’). But now the dire puzzle unfolds in

front of their eyes: it seems to be an ‘established fact’, commonsense knowledge,
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that there are more natural than square numbers, since S has lots of gaps ‘in

between’, that N does not have; this is natural, since S is a proper part of N (i.e.,

using the set-theoretic notation, S ⊂ N). So, now relying on intuitions referring

to the ‘density’ of S in N, Salviati suggests that one should, in fact, more

correctly, conclude that s(N) > s(S). This is what has come to be known as

Galileo’s Paradox.

Now, asks Salviati, which of the two horns of the dilemma is correct? Neither,

apparently, as Galileo ultimately points out, since:

This is one of the difficulties which arise when we attempt, with our

finite minds, to discuss the infinite, assigning to it those properties

which we give to the finite and limited; but this I think is wrong, for

we cannot speak of infinite quantities as being the one greater or less

than or equal to another. ((Galileo, 1638), p. 31)

Now, Galileo does not go so far as to say that, but, since one cannot refer to one

size as being ‘greater than’, ‘less then’, or ‘equal to’ another one in the infinite, it

would, in principle, be fully legitimate and consequential to think that, to all

purposes and intents, there is but one infinite cardinality. Thus, what we would

have at hand, in (Galileo, 1638), would be the enunciation of an early

‘single-cardinality’ conception of the infinite dictated by the impossibility to

come to terms with a conflict between two ways of counting in the infinite, one

based on ‘bijections’ and one on ‘densities’. The former method is formally

enshrined in what would, later, become the central pillar of set theory, that is:
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Cantor’s Principle (CP). Given two sets A and B, if there exists f : A → B

which is 1-1 and onto (i.e., a bijection between A and B), then s(A) = s(B).39

The latter method upholds what was already known in antiquity as Euclid’s

Axiom (Common Notion V of the Elements), that is, the:

Part-Whole Principle (PWP). Given two sets A and B, if A ⊂ B, then

s(A) < s(B).

In our era, the ‘set-theoretic era’, as it were, one tends to think straight away that

CP is the correct way to measure infinite collections, and that, as a consequence,

Galileo’s Paradox is no paradox at all, but rather the hallmark of the infinite itself,

as also expressed by the notion of:

Dedekind-Infiniteness. A set is infinite if and only if it can be put in a

one-to-one correspondence with a proper part of itself; otherwise, it is finite.40

But the correctness of PWP, as is known, was the prevailing view for many

centuries, and still lay almost uncontested in Galileo’s time.41 Moreover,

oscillations between compliance with CP or PWP could even be found, centuries

later, in the work of avowed supporters of the bijection method like Bolzano.42

Now, one could speculate that: 1) Peano shared Galileo’s concerns about the

39CP may also be seen as a ‘variant’ of Hume’s Principle mentioned in §1 (see fn. 4).
40The notion was first formulated in (Dedekind, 1888), V, 64.
41For a careful excursus of the history of several cardinality principles, we refer the reader to

(Mancosu, 2009).
42Cf. (Mancosu, 2016), pp. 130-1.
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possibility of articulating a theory of distinct infinite cardinalities, and that: 2) he

settled on a sober ‘one-cardinality’ conception precisely because he was hesitant

to choose among one of the two (known) methods of counting in the infinite.

In particular, Peano’s 1891 conception might have reflected dissatisfaction both

with a purely Cantorian and with the Euclidean point of view. This is (indirectly)

proved by a remark made by Peano in a footnote of his (Peano, 1891), concerning

Rodolfo Bettazzi’s use of the bijection method to characterise the concept of

number in (Bettazzi, 1887).43 Bettazzi thought that, if two sets A and B could be

put in a one-to-one correspondence, then any correspondence between them

would have to be one-to-one. For the sake of our exposition, let us restate this as:

Bettazzi’s Principle. Given two sets A and B, if there exists a bijective function

between A and B, then there is no function between A and B which is injective,

but not surjective.

Peano correctly objects to Bettazzi that one can biject infinite sets with their own

proper infinite parts, that is, one can have injections of sets with themselves

which, clearly, are not surjective. Further reflection on this fact might have led

Peano to doubt that the bijection method could yield a satisfactory

characterisation of the notion of (infinite) number, as envisaged by Bettazzi, and

the most natural consequence of this would have been that he would not allow for

the existence of different sizes in the infinite.

On the other hand, and regardless of his assessment of Bettazzi’s Principle, if

43The passage is cited (and translated to English) by (Mancosu, 2016), p. 164-5.
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Peano had wanted to stick with PWP, then he would have had to allow for

different infinite sizes anyway, e.g., that of the odd numbers and of N itself, but

this is inconsistent with his conception as we know it.

Overall, Peano’s hesitancy between Euclid and Cantor, so to speak, nails down

the ‘Galilean’ character of his standpoint, which could be summarised as follows:

there is no way to provide scope for different infinite sizes in a way which is

consistent with both the Cantorian and the Euclidean way of counting in the

infinite, and, as a consequence, one has no other choice but prudently retreat to a

single-cardinality conception of the infinite.

4.2 Equinumerosity and Continuity

One further reason for skepticism about the ‘measurability’ of the infinite could

have potentially been suggested to Peano by his work on space-filling curves,

such as his own curve (Fig. 1). Let us see how in more detail.

(Cantor, 1878) discussed groundbreaking results on bijective correspondences

between points sets in different dimensions. In particular, Cantor proved the

bijectability of the closed interval I = [0, 1] with the unit square

I2 = [0, 1]× [0, 1]. The following year, Eugen Netto proved that such a mapping,

however, cannot be a continuous function.44 In 1890, in a paper appeared in the

Mathematiche Annalen, and which is certainly among the Piedmontese

mathematician’s best-known contributions, Peano found a suitable geometrical

44Intuitively, a continuous function can be thought of as one which could be ‘drawn with a free

movement of the hand’.
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Figure 1: A representation of the Peano curve (from (Kennedy, 1980) p. 48)

expression of Netto’s result in his curve.45

The curve is an example of a continuous correspondence between points on the

interval I and the unit square I2, which is not bijective, since it is only surjective.

As Peano shows, for each pair of numbers (x, y), corresponding to a point of the

unit square I2, there exists at least one number t of I whose image is precisely the

45(Peano, 1890), also in (Peano, 1957), pp. 110-14.
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point under consideration, i.e. I densely fills the entire unit square, but there exist

distinct elements of I with which the same pair of numbers (x, y) is associated.

In particular, the same pair of numbers (x, y) may be associated with one, two or

four distinct values of I , depending on the construction of x and y in terms of the

expansion of powers of 3.

The Peano curve is a quintessential example of the counterintuitive aspects of the

geometrical infinite. (Cantor, 1878)’s proof had, already quite unexpectedly,

demonstrated that the dimension of a point set did not matter as far as its

cardinality was concerned (since card(I) = card(I2) in the aforementioned

example), whereas the Peano curve shows that any continuous mapping between

I and I2 would rather suggest that s(I2) ≤ s(I), if such a non-Cantorian notion

of ‘size’ were really available.

As a consequence, in his curve, Peano may have found one further mathematical

example of the practical ‘defectiveness’ of the Cantorian notion of infinite

cardinality, and it is very tempting to see this as one more reason for Peano to

question the value of that notion, along the lines of the ‘Galilean’ standpoint we

have sketched in the previous subsection.

4.3 (Geometric) Infinitesimals and Cantorian Set Theory

(Peano, 1892a) is an attempt to improve on Cantor’s earlier proof that actual

infinitesimal segments are inconsistent.46 In the article, Peano shows a more than

decent understanding of Cantorian set theory, but also seems to want to use it,

46A detailed analysis of Cantor’s proof (for which see (Cantor, 1887)) is carried out in (Ehrlich,
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very originally, in a way compatible with his ‘single-cardinality’ conception of

the infinite.

Key notions in that work are those of ‘bounded’ and ‘infinitesimal segment’.

Given the half-line with origin in o, a ‘bounded’ segment is a segment op with

origin in o and end in p. Peano also denotes a bounded segment with u, or with

ou. An ‘infinitesimal segment’ is an ou lying inside a bounded segment v

denoted with u = v/∞. u’s full definition reads as follows:

We say that the segment u is infinitesimal with respect to v and we

write u ϵ v/∞, if every multiple of u is less than v [...].47

Then Peano proceeds to define the multiple of infinite order of u, ‘∞u’. He says:

We shall posit:

∞u =
⋃

Nu

that is, we call multiple of u of infinite order the set of points which

either lie on some segment u, 2u, 3u, ..., or the upper bound of the

multiples of u.48

2006), pp. 27-51.
47[Dicesi che il segmento u è infinitesimo rispetto al segmento v, e scriveremo u ϵ v/∞, se

ogni multiplo di u è minore di v [...] (p. 113)] Note the use of Peano’s ϵ symbol, which means:

‘is’. Page numbers for (Peano, 1892a) are, again, those of Cassina’s edition, for which see fn. 12.
48[Porremo

∞u =
⋃

Nu
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Now, Peano asserts that, by the definition of infinitesimal, if u is infinitesimal,

also ‘∞u’ must lie inside v, and so must all other infinitary multiples of u. In a

crucial passage of (Peano, 1892a), he says:

We can add ∞ to itself, thus obtaining 2∞u, and, generally, we can

form all multiples of ∞u; we can multiply ∞u by ∞, and obtain

∞2u and so on. But all these various segments, which one obtains

multiplying u by Cantor’s transfinite numbers are all equal to one

another [...].49

As a consequence, infinitesimal segments, if such things existed, would blatantly

violate the properties of bounded segments, which require that, for instance, a

segment of length 2∞u be greater than ∞u. Hence, Peano concludes,

infinitesimal segments are inconsistent with ‘standard’ representations of the

geometrical space.

Leaving aside entirely the issue of the correctness of Peano’s argument, what is

most relevant to our purposes is Peano’s peculiar use of Cantor’s transfinite

numbers and arithmetic. This is indeed puzzling, as, in Cantor’s theory, as we

cioè chiamiamo multiplo d’ordine infinito di u l’insieme dei punti che stanno sopra qualcuno dei

segmenti u, 2u, 3u, ..., o il limite superiore dei multipli di u. (p. 113)] For the sake of simplicity,

in the formula, we have chosen to replace Peano’s original notation: ∪′Nu with
⋃
Nu.

49[Possiamo sommare ∞u con sé stesso, ottenendo così 2∞u, ed in generale possiamo formare

tutti i multipli di ∞u; possiamo moltiplicare ∞u per ∞, ed ottenere ∞2u e così via. Ma tutti

questi varii segmenti, che si ottengono moltiplicando u pei numeri transfiniti di Cantor sono eguali

fra loro, [...]] (p. 113)
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know, ω + 1 > ω, thus, ω + 1 · u is, contrary to what asserted by Peano, greater

than ω · u.

Indeed, Giuseppe Veronese was immediately able to raise precisely this issue. In

(Veronese, 1892), which is meant to be a response to (Peano, 1892a), the Italian

mathematician correctly diagnoses what seems to be the trouble with Peano’s

proof:

But these equalities [∞u = 2∞u = ∞2u = ..., our note] do not

depend on the properties of Mr. Cantor’s transfinite numbers, for

which hold: ω + 1 > ω, 2ω > ω, etc., but precisely on considering

∞u as unlimited (our italics).50

In the passage, Veronese sharply points out that it is Peano’s own definitions of

∞u, 2∞u, etc., not Cantor’s transfinite arithmetic, which allow Peano to assert

that these quantities are all equal. Similar remarks were made by Giulio Vivanti,

who, in his (Vivanti, 1895), explained why the argument was doomed to failure.

Vivanti argued that Peano viewed (∞+ 1)u as the upper bound of (n+ 1)u, but

now the points of (∞+ 1)u must lie either on one of the finite multiples of u, or

be (∞+ 1)u itself. So, (∞+ 1)u is precisely the same segment as ∞u; hence,

(∞+ 1)u and ∞u must be equal. But, as Vivanti points out, if it is true that

Cantor’s ω is the limit of n, it is also true that ω+1 is not the limit of any number,

and, as already pointed out by Veronese, ω + 1 > ω, and (ω + 1)u > ωu.51

50(Veronese, 1892), p. 74.
51(Vivanti, 1895), p. 69.
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So, Peano’s reliance upon Cantor’s transfinite numbers in his proof does not seem

to serve very well his purpose of showing that geometrical infinitesimals are

inconsistent. In order to rescue the force of the argument, (Freguglia, 2021)

conjectures that the reason why Peano holds that:

∞u = 2∞u = ∞2u = ...

is the fact that Peano ‘assimilates’ ‘∞’ to ‘ℵ0’.52 This makes sense because,

Freguglia argues, while, as said, ω ̸= ω + 1, on the contrary, ℵ0 = ℵ0 + 1 and, in

general, if κ is a transfinite cardinal number, and n a natural number:

κ+ n = κ · n = κn = κ

Freguglia’s interpretation has some merit, but seems to be missing, at large, the

mark. In particular, it seems to be rather unjustified to force this interpretation on

Peano’s multiple references to Cantor’s transfinite numbers; the numbers Peano is

referring to here are, it seems to us, and as also understood by Veronese and

Vivanti, just Cantor’s transfinite ordinals (ω, ω + 1, ..., ω + ω, ...).

However, following the spirit, but not the letter, of Freguglia’s intepretation, one

could say that Peano may have taken his numbers (∞u, ∞2u, ...) to be equivalent

to ℵ0 in the sense that he thought that they were, like Cantor’s ordinals, linearly

ordered, but that they had, nonetheless, the same cardinality (since they are all

52Cf. (Freguglia, 2021), p. 152ff. The author says: ‘Peano explicitly assimilates ∞ to ℵ0 [...]’

and then explains ibid., fn. 14: ‘[i]n the sense that it has the same arithmetic behaviour.’
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countable). By this interpretation, since what counts as length of a geometrical

segment is the measure expressed by a cardinal number, one must conclude that

segments of length ∞u, ∞2u cannot but be equal. But there’s a problem with

this interpretation: Cantor’s ordinals may also be uncountable, that is, they may

have different cardinalities, and Peano might have been aware of this.

We wish to put forward one last interpretation of Peano’s argument, which aligns

more with the content of Vivanti’s and Veronese’s comments above. By this

interpretation, Peano viewed his ‘infinite numbers’ as being all equal to each

other not because he thought that ‘∞’ was equivalent to ‘ℵ0’, but because he

thought that there was just one infinite cardinality. So, when Peano is referring to

‘Cantor’s numbers’ in the aforementioned passage, he is really likening his own

numbers to Cantor’s ordinals (as supposed by Veronese and Vivanti), but he is

also committing himself to the view that those numbers must all have the same

cardinality, because, by his own conception, there exists only one, ‘∞’, which

cannot be transcended. Thus, eventually, Peano’s use of ‘Cantor’s numbers’ in

the proof could be seen as an original attempt to merge his own,

‘single-cardinality’, conception with Cantor’s transfinite.

To sum up, the three motivations we have examined, overall, seem to support the

following conclusion: at least in the years 1891-1895, Peano advocated a

carefully thought of, and original, conception of the infinite, which he believed

was motivated by several practical mathematical contexts (such as those

examined in (Peano, 1890) and (Peano, 1892a)) and reasons. The fact that he,
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subsequently, abandoned this conception does not mean that he thought it to be

faulty, ‘half scarce made up’ in any respect, but only that he gradually came to

acknowledge that Cantor’s theory was more general, far-reaching and, ultimately,

fruitful than his own.

5 Concluding Summary

We have reviewed the development of Peano’s conception of the infinite as far as

the publication of the third volume of his Formulario in 1901. We have seen that,

already by the publication of the third section of the second volume in 1899,

Peano’s conception had aligned with the, then already ‘meainstream’,

set-theoretic conception. In our view, both Cantor and Vivanti may have played a

role in persuading Peano to abandon his earlier view.

As far as the view itself is concerned, it seems to us to have adequately shown

that Peano had perfectly clear in his mind its consequences, the way it could be

properly used in mathematical contexts, and how it related to, and could even

merge with, aspects of Cantor’s transfinite.

Moreover, we have seen that, until his full set-theoretic ‘conversion’, Peano might

have been very doubtful of the efficacy, and adequacy, of the bijection method,

especially insofar as this conflicted with PWP.

Finally, we have conjectured that these doubts might have led him to support a

‘single-infinite-cardinality conception’ which partly incorporates, and validates,

Galileo’s skeptical view about the measurability of the actual infinite.
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