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Chapter 1 )
Introduction Check for

Gianluigi Oliveri, Claudio Ternullo, and Stefano Boscolo

1.1 A Metaphysical Dispute

A very important controversy raging within present-day philosophy of mathematics
is the so-called ‘realism/anti-realism dispute.’” In such a dispute the realist, who
holds that mathematics is about discovering and describing properties of entities
which exist independently of our knowledge, is opposed by the anti-realist who
does not share his conviction.

Within the analytical tradition, the realism/anti-realism dispute about mathe-
matics is considered to be metaphysical, because the belief in the existence (or
non-existence) of mathematical reality is an essential component of our thought
about the world.! To this, we must add that if a belief X is an essential component
of our thought about the world then X is one of the preconditions of experience, not
an empirical hypothesis, that is, a belief the correctness of which can be empirically
controlled.

1 See on this Strawson (1974), Introduction, p-9.
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Indeed, if we consider our best scientific theories, that is, theory of relativity
and quantum mechanics, it is undeniable that they are part of our thought about
the world and that some mathematical theories are not only applicable, but also
indispensable, to them. Therefore, the belief in the existence/non-existence of the
posits of those mathematical theories which are indispensable to theory of relativity
or to quantum mechanics is an essential component of our thought about the world;
and a precondition of our experience, for how this is possible through theory of
relativity and quantum mechanics. But, it is not one of the hypotheses that theory of
relativity and quantum mechanics strive to confirm/disconfirm experimentally.

1.2 Can We Dispense with Metaphysics?

Some authors have argued that metaphysical questions about mathematics of the
sort we have raised at the beginning of the previous section can be ‘put to one side,’
if we are prepared to accept the view that mathematical activity simply consists in
devising lists of axioms to do various important mathematical jobs, and criticising
or defending such axioms in relation to their effectiveness towards these ends.?

In replying to this, we, preliminarily, observe that the realism/anti-realism dispute
in the philosophy of mathematics concerns the subject matter of mathematics, not
what mathematicians and, in particular, set theorists do in their work.

Secondly, asserting that developing mathematical theories consists in devising
a list of axioms to do various important mathematical jobs, etc. not only is false in
general—as, for instance, the history of number theory and of mathematical analysis
clearly show—but, in particular, it runs against the history of set theory. As is well
known, when Cantor first introduced, and then developed, set theory, he proceeded
in an entirely informal way. In fact, the first sustained attempt to axiomatise set
theory was made by Zermelo only in 1908.3

Lastly, assuming, for the sake of argument, that, of all mathematical theories, set
theory could be simply reduced to devising a list of axioms to do various important
mathematical jobs, etc., we would then have to ask ourselves how these axioms
are chosen. In answering such a question, we would have to say that either they
are, like the rules of a game, mere tools invented to produce a certain result; or,
alternatively, we would have to give an account of their non conventional nature.
It is not difficult to see that both these ways of explaining the process of axiom
choice in set theory are bound to come shrouded in a thick cloud of metaphysics
reintroducing, as it were, from the window what had been forcibly pushed out of the
door: the realism/anti-realism dispute about set theory.

2 Restricted to set theory, this is the position of P. Maddy. Those interested in Maddy’s philosophy
of set theory might find useful to read Maddy (2011).

3 See Zermelo (1908).
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1.3 An Ontological Dispute

A realist philosopher of mathematics, besides arguing in favour of the existence
of mathematical reality, is under the obligation to provide an account of what sort
of entities populate mathematical reality, e.g., abstract objects, abstract structures,
mental phenomena, attributes of sensible objects, etc. And, although the anti-realist
is spared some of the chores the realist has to go through, such as compiling a list
of what sort of things constitute mathematical reality, etc., he must, nevertheless,
account for mathematical activity by saying what this consists in, e.g., game inven-
tion and playing, production of formal constructions, invention of linguistic tools
for the articulation of the language of theories belonging to the empirical sciences,
etc. In any case, the answers to the unavoidable questions ‘What kind of things
populate mathematical reality?” and ‘What kind of things embody mathematical
activity?’ are going to contribute to a debate concerning the nature (ontology) of
mathematical reality/activity. And this is a debate which radically differs from the
realism/anti-realism dispute.

To see this more clearly, consider that if a realist philosopher of mathematics
is asked what, in particular, arithmetical reality consists of, he might reply that
arithmetical reality is made of abstract objects we call ‘natural numbers’ and that
arithmetic is the science of such objects.*

However, at this point, another discussant of realist inclinations could observe
that since the natural numbers can be determined only up to isomorphism, arithmetic
should not be seen as a science of abstract objects (which objects?), but, rather,
as a science describing that complex abstract entity—comprising abstract objects
and relations defined on them—which has come under the name of ‘arithmetical
structure;” and that, if we wanted to picture such a structure, we could imagine it
as a web in which the nodes are natural numbers, and the links between them are
directed edges representing relations holding between natural numbers.

1.4 On Mathematical Structure

The controversy between realists about objects and realists about structures in the
philosophy of mathematics is relatively recent. Its beginnings may be traced back
to the very end of the nineteenth century. When, in 1899, Hilbert published The
Foundations of Geometry,”> Frege observed that in his book Hilbert had given no
definitions of point, line, plane and of the betweenness relation.® Hilbert’s reply to
Frege, besides abolishing the traditional strict distinction between definitions and

4 See on this Frege (1884), § 61.
5 See Hilbert (1899a).
6 Frege (1899).
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axioms by means of the introduction of implicit definitions,” was given in the purest

structuralist style. And the gist of it was that he did not care what points, lines,
planes and betweenness were in so far as these objects (and relation) obeyed the
axioms of Euclidean geometry he had laid down in his book.®

Despite the suggestiveness of Hilbert’s view of Euclidean geometry, and the
structuralist development of twentieth century mathematics for how this is, for
instance, manifested in the work of the Bourbakists, an important open question
which is still at the heart of any structuralist philosophy of mathematics is providing
a satisfactory definition of mathematical structure. What we said on this topic in
Sect. 1.3 was far too impressionistic (the web ...) and vague to be of much use.

In any case, whatever the correct definition of mathematical structure might
be, a mathematical structure has to be something that bears a strong resemblance
to the Aristotelian concept of form as what individuates and determines a given
(mathematical) entity above and beyond the objects of which this is made. ‘Pattern,
we think, would be a good word for it.

But, is the absence of a unique, shared definition of mathematical structure a
problem for a structuralist philosophy of mathematics? We think not, in so far as we
have very general examples of structures, such as the set-theoretical and category-
theoretical structures, which are virtually applicable to the whole of mathematics.
Why should there be only one kind of general mathematical urstructure from which
all other mathematical structures must originate?

1.5 Logics and Metaphysics

For someone used to thinking of logic as the science of deductive thought, it is
not easy to come to terms with the existence of various different, and mutually
incompatible, logical systems and, in particular, with what the laws of deductive
thought might have to do with the existence/non-existence of God, time, mathemat-
ical reality, and various other important objects of philosophical investigation falling
under the concept of metaphysics, broadly construed. The aim of this section is to
go some way towards an explanation.

The connection between logic and metaphysics goes back to the beginnings of
Western philosophy. A particularly interesting example of such a connection is to
be found in the philosophy of Heraclitus of Ephesus.

7 An implicit definition of a mathematical entity G is a definition of this entity given by a
set of axioms which characterise it. Well known examples of important implicit definitions in
contemporary mathematics are those of group, ring, field, vector space, topological space, etc.

8 See Hilbert (1899b).
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If the concept of flux/change is an essential component of our thought about the
world, we might be tempted to say, with Heraclitus, that:?

We step and do not step in to the same rivers; we are and are not.

and, consequently, we might be drawn to accepting the Law of Contradiction PA—P
(LC). As a matter of fact, if we study the history of Western philosophy, we realise
that, apart from Heraclitus, several philosophers accepted LC, philosophers among
whom we find Hegel, the dialectical materialists, and the so-called ‘dialetheists,’
that is, those logicians who believe in the existence of true contradictions (P and
— P are both true).

A traditional way of attacking metaphysical systems which compel the accep-
tance of LC was the discovery, due probably to Duns Scoto (1265-1308), of the
so-called ‘Principle of Explosion’ of classical logic: ex contradictione quodlibet.
This property, which classical logic shares with other logics, e.g., intuitionistic logic,
has the effect of trivialising any formal system of classical logic § within which we
can prove a contradiction. It was only in the second half of the last century, with the
advent of the so-called ‘paraconsistent logic,” that a way of ‘taming’ the Principle
of Explosion was found (in a non-classical logic). This, of course, ended up giving
logical respectability to metaphysical systems like that of Heraclitus.

Another famous example of the interaction between logic and metaphysics comes
from the Middle Ages. And it has to do with Anselm of Aosta’s attempt to prove the
existence of God'%—one of the problems of traditional metaphysics!'—by means
of the so-called ‘ontological argument.’

To put it succinctly, in the ontological argument Anselm argues from the
existence in the understanding (possibility) of something than which nothing greater
can be thought to the existence in reality (actuality) of such a being. Although the
ontological argument appears to be in clear contrast with the celebrated logical
principle a posse ad esse non valet consequentia, it has been an object of controversy
from the time of its first publication to Kurt Godel’s repeated attempts to recast it in
the shape of a formal proof of modal logic.!?

9 Diels and Kranz (1969), vol. 1, Chapter 22 Eraclito, Fragment 49a, p. 207.

10 See on this Anselm (2007).

1 See on this Kant (1787), I Transcendental doctrine of the elements, Second Division. Transcen-
dental Dialectic, Book I, § 3, footnote a, p. 325:

Metaphysics has as the proper object of its inquiries three ideas only: God, freedom, and
immortality [...]

12 See on this Godel (2008).
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More recent examples of the interaction of logic and metaphysics are to be
found in the work of Kant!3 (classical logic); Arthur Prior'* (tense logic); in the
debate concerning whether or not one should be realist about possible worlds!?
(modal logic); and in Michael Dummett’s way of formulating the realism/anti-
realism debate (classical vs. intuitionistic logic).

In the course of the history of Western philosophy legions of philosophers of
mathematics have been quarrelling over the existence of mathematical reality—
Plato, Aristotle, Frege, Russell, Hilbert, Brouwer, Godel, Quine, and countless
others, all grappled with this issue at some point or another—but, it is in Dum-
mett’s peculiar way of recasting the traditional realism/anti-realism dispute about
mathematics that we see one of the clearest examples of the interaction between
various types of logic and metaphysics.

According to Dummett:

[i]t is difficult to avoid noticing that a common characteristic of realist doctrines is an
insistence on the principle of bivalence—that every proposition, of the kind under dispute, '
is determinately either true or false. Because, for the realist, statements about physical
reality do not owe their truth-value to our observing that they hold, nor mathematical
statements their truth-value to our proving or disproving them, but in both cases the
statements’ truth-value is owed to a reality that exists independently of our knowledge of
it, these statements are true or false according as they agree or not with that reality [...]
Those who first clearly grasped that rejecting realism entailed rejecting classical logic were
the intuitionists, constructivist mathematicians of the school of Brouwer.!”

In what Dummett asserts in the quotation above not only do we see how different
views concerning the existence of mathematical reality entail the acceptance of
different types of logic, but we also come to realise that, perhaps, there is a way of
translating the traditional metaphysical debate between realists and anti-realists in
the philosophy of mathematics into a ‘logical” debate on the nature of mathematical
truth: agreement with reality or provability?'®

One of the important consequences of such a translation would be that, since
in a debate about the nature of mathematical truth language looms large—after all,

13 Consider Kant’s famous remark:

‘Being’ is obviously not a real predicate [...] Logically, it is merely the copula of
a judgment. (Kant (1787), I Transcendental doctine of elements, Second Part, Second
Division, Book II, Chapter III, § 4, p. 504.)

For a modern analysis of the consequences of Kant’s view of ‘being’ on the ontological argument
and on Descartes’ cogito argument see Carnap (1932).

14 See, for instance, Prior (1957).

15 Such a debate sees modal realists such as David Lewis (see Lewis 1986) opposing modal anti-
realists like Saul Kripke (see Kripke 1980).

16 In a Dummettian realism/anti-realism debate the propositions under dispute are those and only
those for which both the realist and anti-realist admit that they do not have criteria of decision. See
on this Oliveri (1994).

17 Dummett (1991), Introduction, p. 9. On this see also Dummett (1973).

18 See on this Dummett (1959) and Dales and Oliveri (1998).
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truth can always be thought of as the truth of a proposition—it seems, in principle,
possible to develop a theory of meaning'® for the language of mathematics which
might have a chance of adjudicating the dispute.

1.6 Logics and Ontology

A classic example illustrating the importance of logic for the debate on the nature
of the entities studied by mathematical theories is the dispute about whether
mathematics is a science of objects or structures.

As we shall see in this section, the discussion concerning what kind of (classical)
logic—first- or second-order—one should adopt in developing formal systems of
arithmetic might prove of some importance for the objects vs. structures controversy
in the philosophy of mathematics.

Let T be a consistent formal system of arithmetic. As we have seen in Sect. 1.3,
we can consider T as a science of objects, a la Frege, or as a science of structures,
where by ‘structure’ here we mean amodel M of T. If T is first-order, say T is Peano
Arithmetic (PA), it will certainly have the standard (or natural) model in whose
domain we have all the natural numbers, etc. But it will also have non-standard (or
‘Frankenstein’) models which are not isomorphic to the natural model of 7.2°

In this situation it comes easy to: (1) dismiss the view that T is a science of
structure, because the criterion of identity for structures is structure isomorphism,
and there are models of 7" which are not isomorphic to one another; (2) regard
the Frankenstein models of T as interesting/annoying curiosities; and (3) cling on
to the idea that arithmetic is really the science of those dear objects we have all
become familiar with from the time of our ‘gingerbread or pebble arithmetic’?!
at elementary school, that is, the objects we refer to by means of the numerals
0,1,....n,n+1,...

However, if T is a consistent formal system of (full) second-order arithmetic
then, from Dedekind’s Categoricity Theorem, we know that any two models of T are
isomorphic to one another. What this means is that there is essentially one structure
satisfying the axioms of 7, and we highlight this remarkable fact by saying that T
is categorical *

Clearly, the categoricity of T plays right into the hands of the structuralist
philosopher of mathematics. For, if T is categorical, there is only one structure
characterised by T and, consequently, the elements of the domains of the various
models of T can be regarded as mathematically irrelevant. Now the structuralist
philosopher of mathematics can smugly say, with Hilbert, that it does not matter

19 See on this Dummett (1991), Introduction and Chapter 15.
20 See on this Boolos and Jeffrey (1991), Chapter 17.

21 Frege (1884), Introduction, p. VIIL.

22 See on this Boolos and Jeffrey (1991), Chapter 18.
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what kind of things the terms ‘0,” ‘natural number,” and ‘successor’ refer to in so far
as these entities satisfy the (full) second-order Peano axioms.

As the reader can easily see, arguing in favour/against the adoption of first-
order/second-order logic in formal systems of arithmetic has profound conse-
quences on the (ontological) objects vs. structure dispute about arithmetic.??

1.7 The Book

Objects, Structures and Logics is an edited collection of articles based on some
of the talks given at the III International Conference of the Italian Network for
the Philosophy of Mathematics (FilMat). The conference took place in the town
of Mussomeli (Sicily) at the end of May 2018, and was a success both scientifically
and socially.

The papers appearing in this volume have been arranged into three main sections.
Although the sectioning adopted will inevitably look somewhat artificial, we believe
that it provides the reader with a reliable indication of the book’s main topics.

The first section, ‘Mathematical Objects’, is arguably the most metaphysical
in character, featuring contributions which address the nature and definability of
mathematical objects, and, among others, the long-standing questions of what
mathematical objects there are, on what grounds some objects may be seen as having
greater foundational relevance than others, and neo-Fregeanism.

The second section, ‘Structures and Structuralisms’ ties in with our discussion
of Structuralism (Sect. 1.4), and of its philosophical ramifications. The papers
included here assess the strength of several structuralist proposals, and examine
novel approaches to well-established and more recent questions.

The third section, ‘Logics and Proofs’, comprises work focussing on century-old
issues in the philosophy of mathematics, e.g., the nature and value of mathematical
proofs (also in non-classical contexts), mathematical theories of truth, and explores
the recently emerged proof-theoretic notion of grounding.

1.7.1 Part I: Mathematical Objects

In the first paper of the collection Luca Zanetti challenges the standard definition
of mathematical Platonism according to which mathematical entities exist and are
mind, and language, independent. Zanetti argues that the standard definition fails to
distinguish Platonism from several varieties of Aristotelianism in the philosophy of
mathematics; and that Platonism ought to be characterized rather in terms of meta-

23 This is, by no means, a situation which concerns only arithmetic. Similar considerations are
applicable to formal systems for the real numbers and other mathematical theories.
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physical grounding, as the idea that there are fundamental mathematical entities.
By contrast, says Zanetti, Aristotelianism upholds the existence of mathematical
objects, even though these are not considered to be metaphysically fundamental.

Platonism and Aristotelianism share the view that mathematical objects do exist.
Nominalism, by contrast, is the view according to which mathematical objects
do not exist. Eric Snyder, Richard Samuels and Stewart Shapiro criticize
nominalism by elaborating on the so-called ‘Frege’s Other Puzzle’. The Puzzle
can be roughly stated as follows: how can an expression, such as ‘four’, serve
seemingly different semantic functions in equivalent statements, such as ‘Jupiter has
four moons’ and ‘the number of Jupiter’s moons is four’? The authors present the
traditional responses to the Puzzle and elaborate on Hofweber’s adjectival strategy.
According to Hofweber, a statement such as ‘Jupiter has four moons’ is true in virtue
of non-referential determiners. This claim, if plausible, would lead to the conclusion
that numbers do not refer to mathematical objects. Snyder, Samuels and Shapiro
examine two components of Hofweber’s strategy (the syntactic and the semantic
components) and argue that Hofweber’s solution of Frege’s Other Puzzle does not
survive strict empirical scrutiny.

In the third paper of this section, Ingo Blechschmidt discusses peculiar math-
ematical objects known as foposes (as he says, the ‘toposophic’ landscape), of
which he provides an exhaustive overview. Toposes first emerged in the work
of Alexander Grothendieck in the 1950-1960s. Subsequently, they became the
subject of independent investigation in the context of category theory. Indeed, as
Blechschmidt shows, a topos shares many categorical properties with the category
of all sets, that is, the category whose domain consists of all sets, and all maps
among them. One further distinctive feature of toposes is that they standardly obey
intuitionistic, rather than classical, logic; therefore, they may be more suitable than
alternative foundational frameworks (such as set theory) to deal with a variety of
mathematical universes arising not only from alternative choices of axioms, but
also from different conceptions of logic. Among other things, Blechschmidt’s paper
examines the relevance of toposes to the debate on several outstanding issues in the
contemporary philosophy of mathematics (some of which have been reviewed in
Sect. 1.1): the extent and strength of non-classical logics, the realism/anti-realism
dispute, the nature of mathematical objects, the relationship between toposes and
mathematical (set-theoretic) universes (the set-theoretic multiverse), the problem
of how mathematical structures should be characterised, and, finally, the viability
of conceptions of non-standard analysis (such as synthetic differential geometry)
alternative to Abraham Robinson’s original system of hyperreals.

The neo-Fregean programme has recently emerged as an attempt to revive
Frege’s logicism. In his paper, Daniel Waxman takes into account the issue of
the indispensability of ‘implicit definitions’ within such programme. As Waxman
explains in detail, neo-Fregeans have come to view the logicist programme as hinged
upon the definition of mathematical terms through implicit definitions. In turn,
implicit definitions are commonly thought to be based on abstraction principles. The
quintessential and, one should add, most prominent abstraction principle targeted
by neo-Fregeans is Hume’s Principle. Now, Waxman acknowledges that implicit
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definitions, and abstraction principles, fulfil many tasks which are relevant to
the neo-Fregean project. However, he explores a different strategy, the Hilbertian
Strategy, which views the definition of mathematical terms as given by the axioms
of mathematical theories themselves. Then, he proceeds to produce a full-fledged
defence of this strategy against potential objections raised by such neo-Fregeans
as Hale and Wright, and concludes that ‘neo-Hilbertianism’ might be a serious
contender of abstraction principles.

1.7.2 Part I1: Structures and Structuralisms

In the first contribution of this section Neil Barton examines the significance and
strength of the structuralist viewpoint for contemporary set theory. The author first
reviews classifications of structures into general (or algebraic, those which admit
of non-isomorphic exemplars) and particular (or non-algebraic, those which do
not admit of non-isomorphic exemplars), and then deals with the issue of how
one comes to isolate and characterise specific mathematical structures. The author
contrasts Georg Kreisel’s view, that the identification of structures is carried out
through a process of ‘informal rigour’, which culminates in the adoption of a
categorical (second-order) set of axioms for the structure under consideration, with
Michael Resnik’s idea, which considers the characterisation of structures as being
open to the use of different logical resources. In order to tackle the issue in more
detail, Barton focuses on a paradigmatic case study, that of set theory, and argues
that, while Kreisel’s suggestion might be partly correct, in the sense that set-
theoretic reference might be dictated by categoricity concerns as expressed by the
idea of informal rigour, the logic underlying set-theoretic thought, which Barton
suggests may be weaker than second-order logic, would still allow one to keep the
algebraic interpretation of set theory alive. Thus, Barton concludes that our level of
informal rigour within set theory is not high enough to decide whether, for instance,
the Continuum Hypothesis is true or false.

In the subsequent paper Silvia Bianchi contends that Shapiro’s structuralism
can be interpreted in terms of grounding so as to avoid any eliminative view of
mathematical objects. She advocates weak mathematical structuralism, that is, the
idea that mathematical objects are metaphysically grounded in the structure they
belong to. Bianchi starts by drawing a comparison between the philosophy of
science and mathematics, and ends by defending a thin concept of mathematical
objects. Bianchi attempts to vindicate the priority of structures over objects by
overcoming the main objections to ante rem structuralism.

In his intriguing, if unconventional, contribution Jean-Pierre Marquis tackles
the issue of whether a notion of ‘mathematical style’ can be successfully articulated.
To this end, he examines a fascinating case study, that of Bourbaki’s Eléments,
a milestone in the history of the foundations of mathematics which sparked
controversy since its appearance in the 1940s. Before plunging into the examination
of his case study, Marquis provides a brief overview of alternative methods and ways
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of doing mathematics which would exemplify the notion of style. He thus proceeds
to outline the idiosyncratic elements of Bourbaki’s conception of mathematical
work, something which leads him to isolate what one may view as bona fide
features of a ‘Bourbakist style’. As Marquis clarifies, the latter would consist in
a ‘structuralist style’, that is, a peculiar way of doing mathematical work based on:
(1) viewing structures as fundamental objects of investigation, (ii) selecting the right
axioms for them, and (iii) committing oneself to absolute logical rigour in proofs.
Marquis’ examination of the topic includes, among other things, useful information
about the history and development of the still ongoing Bourbakist undertaking.

While Blechschmidt’s paper provides a comprehensive account of topos theory,
by exploring a broad range of philosophical scenarios and ramifications, Olivia
Caramello’s contribution to this volume focuses on a specific class of mathematical
structures, that is, Grothendieck toposes. In particular, Caramello defends the
idea that the latter may be viewed as ‘unifying bridges’ in mathematics. First,
Caramello explains that the kind of unification she wishes to investigate does not just
reduce to mere generalisation through ‘dilution’ of the pre-existing mathematical
objects, but is, rather, a way of connecting objects in a dynamic way (that is,
a way which allows one to transfer bits of knowledge from a given class of
objects to another one), by pinning down special abstract properties which underlie
the objects under consideration, an approach which, among other things, clearly
expresses structuralist concerns. In more practical terms, this ‘unification’ consists
in identifying high-level invariants, of which the objects connected may, in turn,
be seen as low-level expressions, or forms, a process which Caramello describes as
morphogenesis. Afterwards, she proceeds to exhibit concretely how Grothendieck
toposes, arising from a generalisation of other concepts of algebraic geometry, a
discipline having noticeable unifying virtues itself, help ‘make bridges’ among
different mathematical objects, and reviews other relevant mathematical phenomena
which make sense of this perspective.

1.7.3 Part III: Logics and Proofs

The first article of this section, authored by Davide Catta and Antonio Piccolomini
D’Aragona, makes an original comparison between Jean-Yves Girard’s ‘ludics’ and
Dag Prawitz’s ‘theory of grounds’, emphasising some shared philosophical ideas
about proofs and deduction. Catta and Piccolomini then proceed to outline a formal
translation of the implicational fragment of intuitionistic logic. This translation,
they suggest, may lead to a dialogical reading of Prawitz’s theory of grounds. The
translation, although sketchy, is an important starting point to frame intuitionistic
logic within Girard’s Iudics.

Intuitionism is a form of constructivism, which in general is concerned with
constructive mathematical objects and reasoning. Constructive mathematics is a
form of mathematics that uses intuitionistic rather than classical logic. Along with
constructivism, predicativism regards as suspect talk of definitions that attempt
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to define mathematical entities circularly. In her contribution Laura Crosilla
elaborates on the notion of predicativity in the foundations of mathematics. The
standard approach to predicativism is based on formal theories that reject gener-
alised inductive definitions. This approach originates from Russell and Weyl, in
particular, from the idea that sets of natural numbers need to be defined predicatively
to avoid any violation of the Vicious—Circle Principle. It is, perhaps, overlooked that
inductive definitions could be predicative in a sense that differs from the (standard)
proof—theoretic analysis of predicativity. Crosilla offers three possible strategies that
are available to the constructivist to defend the predicativity of inductive definitions.

The notion of truth plays a central role in the relation between logic and the
philosophy of mathematics. Indeed, a strong reason to commit ourselves to the
existence of mathematical entities is provided by a certain view of mathematical
truth. And, in turn, mathematical truth has been traditionally correlated to proof.
Andrea Cantini examines the impact that the truth predicate has on the philosophy
of mathematics by presenting axiomatic theories of truth leading to a brand-new
analysis of predicativity and truth predicates.

Enrico Moriconi’s paper addresses Imre Lakatos’ notion of proof. As is well
known, Lakatos’ view was that mathematical proofs do not just reduce to formal
procedures. In fact, formalisation is just one of the many aspects involved. Other
aspects of ‘proof-making’ also include the creation of new concepts (sometimes
through the ‘stretching’ of existing ones); moreover, proof-making is compared
by Lakatos to the fallibilist process consisting in taking into account alternative
hypotheses and selecting that which best accommodates the available data, a view
which makes Lakatos’ doctrines resemble Popper’s own falsificationist conception
in the philosophy of science. Moriconi explores both Lakatos’ notion of ‘concept-
stretching’, by illustrating the Hungarian philosopher’s thesis that semantic and
definitional aspects of proof-making may not be separated from the purely formal,
proof-theoretic ones, as well as the controversial relationship between Popper’s
and Lakatos’ doctrines, by highlighting their multiple convergences and parallel
evolution.

Finally, in the last contribution to this section Samuele Maschio addresses
‘existence properties’ in the context of constructive mathematics. Such properties
are easily definable in a more powerful ‘ambient’ theory, that is, category theory,
and Maschio’s goal is precisely that of examining category-theoretic versions of the
properties in question. To this end Maschio first describes the semantics underlying
constructive mathematics known as the BHK interpretation of the logical constants
(after Brouwer, Heyting and Kolmogorov), and then proceeds to reformulate
existence properties in terms of metamathematical properties. This can, practically,
be done by means of a translation of such properties into definable classes, and
then taking into account the category of all such definable classes. The effectiveness
of the translation also exhibits the versatility of category theory, which, like topos
theory, allows one to take into account a broad range of alternative logics, axioms
and mathematical universes.
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Mathematical Objects



Chapter 2 )
Aristotle’s Problem Chock or

Luca Zanetti

Abstract Platonism is traditionally defined as the view that there are abstract
mathematical objects, and that those objects are independent of human beings and
their thoughts, language, and practices. This paper has two goals. First, to show that
this definition fails to distinguish platonism from various forms of aristotelianism
in the philosophy of mathematics, according to which mathematical objects depend
for their existence and properties on non-mathematical ones. Second, to argue that
platonism is best defined in terms of metaphysical fundamentality, as the view that
there are fundamental mathematical entities. I finally distinguish between different
varieties of mathematical aristotelianism.

Keywords Mathematical platonism - Aristotelianism in mathematics -
Fundamentality - Metaphysical dependence - Ontological commitment

2.1 Introduction

You know one from the company it keeps. For this reason, we will start our
investigation of aristotelianism in mathematics from platonism. As emphasized by
Linnebo (2018, 189), Mathematical platonism (“platonism’ for short) is traditionally
characterized by two claims:

[EXST]
There exist abstract mathematical objects.
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[IND]
Mathematical objects, if any, exist and have their properties indepen-
dently of intelligent agents and their language, thought, and practices.

Let’s consider those two claims in some details.

EXST consists of two sub-claims: (1) mathematical objects exist, and (2) those
objects are abstract entities.

As regards (1), the claim that mathematical objects exist can be usefully
explicated in terms of the ontological commitments of platonism. According to the
well-known criterion due to Quine, the ontological commitment of a theory consists
in what must lie in the range of its (first-order) quantifiers in order for the statements
of that theory to be true. Quine’s criterion can be made tolerably clear by means of
the standard notions of interpretation, satisfaction, and logical entailment.

As usual, let an interpretation of a first-order language be a pair M = (d, I},
where d is an non-empty set, i.e. the domain, and / is a function which assigns
a member of d to each first-order constant of the language, a subset of d to each
one-place predicate letter, and a set of ordered n-tuples of members of d to each
n-place predicate letter; and let an assignment on an interpretation M be a function
which assigns a member of d of M to every first-order variable. For each singular
expression ¢, if 7 is a constant, let the denotation of ¢# in M under the assignment
s (‘Dps(t)’) be 1(¢), and, if ¢ is a variable, let Dy 4(¢) be s(¢). If #; and 1, are
terms, then M satisfies the formula ‘4 = .’ (‘M,s = t; = t°) if and only
if (“iff>) DM, s(t1) is the same as DM, s(t2). If R" is an n-place predicate letter
and 1, ...,1, are singular expressions, then M,s = ‘R"(t1,...,t,) iff the n-
tuple [DM, s(t1), ..., DM, s(t,)] € I(R™). Satisfaction for complex sentences is
defined inductively as usual. Let ¢ and i be schemas for sentences of the language.
M, s = —(¢) iff itis not the case that M, s = ¢; M,s = ¢ Ay iff both M, s = ¢
andM,s =y, M,s =¢Vvyiffeither M,s EporM,s =y; M,s =¢ — ¢ if
and only if it is not the case that M, s |= ¢, or M, s = . Finally, M, s = Vu (¢) if
and only if, for every assignment s’ that agrees with s except possibly at the variable
u, M,s’ = ¢, and M,s = Ju () iff, for some assignment s’ that agrees with s
except possibly at the variable u, M, s’ = ¢. We say that ¢ is logically entailed by
a set of sentence I if, for any interpretation M of the language, if M = , for each
Y € I',then M = ¢.

Given these notions, Quine’s notion of ontological commitment can be glossed
as follows: a theory T is ontologically committed to K’s if and only if it logically
entails ‘Ix (K (x))’, i.e. if and only if for any interpretation which satisfies the
sentences of 7', there is some entity in the domain of interpretation which belongs
to the extension of K. Given this clarification, (1) can be formalized as:

dx (M AT (x)),
where ‘M AT (x)’ is a predicate which is true of all and only mathematical objects.

Given our clarifications above, platonism is the view that is ontologically committed
to mathematical objects.
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As regards (2), it is generally assumed that mathematical objects are abstract
rather than concrete ones. Lewis (1986) famously distinguishes four ways in which
the distinction between abstract and concrete entities can be made, which he labels
the Way of Negation (WoN), the Way of Example (WoE), the Way of Conflation
(WoC), and the Way of Abstraction (WoA). On the WoN, abstract entities are
characterized by the properties that they typically lack; in particular, abstract objects
lack spatio-temporal location (abstract objects are nowhere) and causal powers
(nothing is caused by abstract entities, and they are not caused by anything). On
the WoE, abstract entities are those that are similar, in some sense to be specified, to
paradigmatic cases of abstractness, e.g. sets. On the WoC, the distinction between
concrete and abstract entities is explained by recourse to more familiar or better
understood distinctions (e.g. between particulars and universals). On the WoA,
abstract entities are the result of some mental process, i.e. abstraction, which is
usually taken to consist in forming a general concept by omitting some of the
features which distinguish particular objects from one another.

Lowe (1995) makes a similar distinction between three conceptions of abstract-
ness. In particular, abstract; objects are ‘“nonspatiotemporal in nature”, while
concrete objects are “thought of as existing in space and time” (p. 513); abstract,
objects are “logically incapable of enjoying a ‘separate’ existence ...even though
they might be separated ‘in thought™ (p. 514); finally, abstractzobjects are “intro-
duced by way of abstraction from concepts, according to Fregean abstraction
principles” (pp. 514-4).

Lowe’s distinction partially overlaps with Lewis’s one. Lewis’s WoA and Lowe’s
abstractnessy correspond to a psychological conception of abstraction, according
to which abstract entities result from some kind of mental process. By contrast,
Lowe’s abstractness3 corresponds to a logical conception of abstraction, which
consists in an assignment of objects to (possibly non-abstract) items on the basis of a
given equivalence relation over those items. More precisely, a (Fregean') abstraction
principle is a universally quantified biconditional of the form ‘VaVf (2(x) =
¥(B) < o ~ B)’, where @ and § are variables of the same type (e.g., first-order or
second-order), ‘¥’ is a term-forming operator that denotes a function from entities
of the type of o and S to objects, and ~ stands for an equivalence relation over
entities of the given type.

Frege (1953) gave two famous examples of abstraction. The first one concerns
directions; the principle states that for any two lines a and b, those lines have the
same direction if and only if they are parallel. Frege’s second example is Hume'’s
Principle (HP), which states that for any two concepts F and G, the cardinal number
of F (‘#(F)’) is the same as the cardinal number of G (‘#(G)’) justin case F and G
are equinumerous, i.e. if and only if the F’s and the G’s can be put into one-to-one
correspondence (‘F' &~ G’), where ‘F ~ G’ abbreviates the (purely second-order)
statement that there is a relation R such that every object falling under F is R-

Ly, Frege (1953, §§ 64-7); see Mancosu (2016) for an overview of the use and significance of
abstraction principles before and after Frege.
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related to a unique object falling under G, and every object falling under G is such
that there is a unique object falling under F' which is R-related to it.

In this paper we will take ‘abstract object’ to mean ‘object by abstraction’, i.e.
objects that are assigned items of a given type by an abstraction function introduced
by the relevant Fregean principle.”> We will consider the second claim, IND, in the
next section.

2.2 The Independence Thesis

The independence claim states that mathematical objects are independent of human
beings and their thoughts, language, and practices.

This claim is informed by an analogy with ordinary physical objects; in the words
of Linnebo (2009, Sect. 4.2), “[according to Platonists] just as electrons and planets
exist independently of us, so do numbers and sets”. More precisely, the analogy in
question is meant to distinguish between mathematical objects, on the one side, and
mind-dependent objects, like promises or institutions, on the other.

The independence claim is naturally glossed in modal terms as follows: had
human thoughts, language and practice been different, or had there been no
intelligent agent at all, there would still have been mathematical objects. Linnebo
highlights that this claim informs our ordinary thinking about counterfactual
scenarios:

We often reason about scenarios that aren’t actual. Were we to build a bridge across this
canyon, say, how strong would it have to be to withstand the powerful gusts of wind? Sadly,
the previous bridge collapsed. Would it have done so had the steel girders been twice as
thick? This form of reasoning about counterfactual scenarios is indispensable both to our
everyday deliberations and to science. The permissibility of such reasoning has an important
consequence. Since the truths of pure mathematics can freely be appealed to throughout our
counterfactual reasoning, it follows that these truths are counterfactually independent of us
humans, and all other intelligent life for that matter. That is, had there been no intelligent
life, these truths would still have remained the same.>

Let provisionally express IND as the counterfactual

[IND]
—dx (MIND(x))O—»3x (MAT (x)),

where, as before, ‘M AT’ is true of all and only mathematical objects, and ‘M IN D’
is true of all and only minds and mind-dependent entities (we also assume that
MIND and M AT are disjoint). IND states, therefore, that had there been no minds,
there would still have been numbers.

2'We will not consider, in particular, in re structuralism as a variety of mathematical aristotelianism;
cf. Resnik (1997).

3 Cf. Linnebo (2009, Sect. 4.1).
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One might wonder whether this counterfactual conditional exhausts the intended
analogy between physical objects and mathematical objects. If it did, then, as
Linnebo remarks, anyone who accepts (mathematical) object realism, i.e. the view
that there are abstract mathematical objects, should also accept IND. However, the
independence claim is meant to express the more substantial idea that “mathematical
objects are just as “real” as ordinary physical objects”.

Moreover, one might also wonder whether the analogy with physical objects
exhausts the Platonist notion of independence. Platonists assert not only that
mathematical objects are mind- and language-independent, but also that they
constitute a realm which is separate from the realm of both ordinary physical objects
and mind-dependent entities. A plausible sense in which this claim is made is that
mathematical objects entertain no causal or spatio-temporal relations with (our)
world. At the same time, Platonists seem to put forward a more general metaphysical
thesis, namely that mathematical objects do not owe their existence to non-
mathematical ones; in particular, since mathematical objects are not ontologically
dependent on neither intelligent agents nor ordinary physical objects, they would
have existed, and been the same, even if there had been no intelligent agents or
physical objects at all.

Finally, EXST and IND together fail to distinguish platonism and various forms
of aristotelianism in the philosophy of mathematics.

In Metaphyics (X111, 1076a, 35-37) Aristotle writes:

If the objects of mathematics exist, they must exist either in sensible objects, as some say,
or separate from sensible objects (and this also is said by some); or if they exist in neither
of these ways, either they do not exist, or they exist only in some special sense. So that the
subject of our discussion will be not whether they exist but how they exist.*

Later on, Aristotle asserts that “it is true to say without qualification that
the objects of mathematics exist, and with the character ascribed to them by
mathematicians”. This leaves the mathematical realist with two options: either
(A) numbers exist “in” physical things, or (B) they are “separate” from those
things. Aristotle’s option (B) corresponds to (traditional) platonism, which is in
turn specified, as seen, in terms of EXST and IND. (A) is, by contrast, a form of
aristotelianism in mathematics, according to which mathematical objects depend,
for their existence and their properties, on non-mathematical entities.’

Here is a challenge to the standard definition of platonism. Indeed, Aristotle’s
options cannot be distinguished from each other on the basis of EXST and IND
alone. On the one hand, the Platonist and the Aristotelian agree that mathematical
objects exist. They might also agree, on the other hand, that mathematical objects

4 Aristotle (1924, 11, p.433).

5 Aristotle’s mathematical realism was in fact neither of type (A) nor of type (B); Aristotle held, by
contrast, that mathematical entities are attributes of sensible objects, but those entities do not exist
in those objects. My use of the term ‘Aristotelianism’ to indicate type-(B) mathematical realism
traces back to Horsten and Leitgeb (2009, 217-8); cf. also Schwartzkopff (2011) and Donaldson
(2017).
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are mind- and language-independent.® However, they disagree on how those objects
exist: according to the Platonist, mathematical objects are ontologically independent
entities, while, according to the Aristotelian, those objects depend for their existence
on physical ones.

2.3 Defining Platonism

The second goal of this paper is to argue that platonism is best defined in terms of
metaphysical fundamentality.

Recall that, according to the Platonist, numbers exist independently of entities
of other (i.e. non-mathematical) sort. It is therefore tempting to reformulate IND as
follows:

[SORT]
For any non-mathematical sort K, mathematical objects exist and
have their properties independently of whether K’s exist.

The question is how the relevant notion of (in)dependence should be understood. It
is natural to interpret this claim as before, by cashing it out in modal terms:

[MODAL SORT]
For any sort K of non-mathematical entities,

—3x (K (x))O>3x (MAT (x))

However, this modal gloss to SORT is insufficient, since it fails again to distinguish
platonism from various forms of aristotelianism.

One such conception is Linnebo’s minimalism in the philosophy of mathematics.
Minimalism is the view that “mathematical objects are thin in the sense that very
little is required for their existence” (2018, 3). More precisely, Linnebo claims that
the truth of the right-hand side of an abstraction principle is sufficient, in a technical
sense,’ for the truth of its left-hand side.

Consider however the following instance of HP, whose right-hand side asserts
that the concept being non-self-identical, "x # x ', is equinumerous with itself:

#Tx#x N =#"xZx ) Tx#x"'m"x #x" )

Following Linnebo’s characterization, the right-hand side of (0) is sufficient for
the truth of its left-hand side, and therefore for the number of not-self-identical

60Of course, the Aristotelian might alternatively claim that mathematical objects are mind-
dependent; my point here is merely that a form of Aristotelianism which accepts both EXST and
IND is a lively possibility, as witnessed by the examples below.

7 Cf. Linnebo (2018, 140).
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things, namely zero, to exist. However, it is a truth of (second-order) logic that
"x # x '~ Tx # x . Logical truths are typically conceived of as required nothing
of the world for their truth: had there been no objects at all, and, in particular,
had there been no non-mathematical objects, it would still have been the case that
the concept being non-self-identical is equinumerous with itself, and, therefore, the
number zero would have existed even if there had been no non-mathematical objects
at all. Minimalism hence complies with MODAL SORT, even if Linnebo stresses
that his own brand of lightweight platonism is less demanding than more traditional
forms of mathematical realism, according to which the existence of mathematical
objects imposes a significant burden on reality (cf. Linnebo (2018, xi).).

MODAL SORT must be strengthen in order to avoid this difficulty. The Aris-
totelian argues that mathematical objects are not among the most basic constituents
of reality; she contends that numbers depend for their existence and their properties
on entities of other kinds. The Platonist, by contrast, would argue that reality is, at
least to some extent, fundamentally mathematical. Therefore, it might be reasonable
to substitute IND, in any of its forms, with the following thesis:

[FUND]
There are fundamental mathematical objects.

The Platonist would assert FUND, while the Aristotelian would deny it. Note
however that FUND might come in two versions. Let FUN D(x) be a predicate
that is true of all and only the fundamental things.® The first and more radical view
would be as follows:

[STRONG FUND]
Vx (MAT (x) — FUND(x))

For example, Shapiro (1997, 73-4) claims that the Platonist is committed, or might
be committed, to the view that mathematical object, e.g. natural numbers, are
independent of each other:

[the Platonist] might attribute some sort of ontological independence to the individual
natural numbers. Just as each beach ball is independent of every other beach ball, each
natural number is independent of every other natural number. Just as a given red beach ball
is independent of a blue one, the number 2 is independent of the number 6.

However, STRONG FUND might be too extreme. For example, the (traditional)
Platonist might contend that the following two views are both correct:

(a) the empty set is ontological fundamental;
(b) each non-empty set ontologically depends on its members.

(a) and (b) entail that each (non-empty) pure set, that is, each set whose members are
all sets, is an ontologically dependent entity. It seems therefore sensible to ascribe
to the Platonist a more moderate view, that is,

8 Nothing hinges here on whether the fundamentality is taken as a monadic or a as a relational
property; cf. Wilson (2014, IV.i).
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[WEAK FUND]
Ix (MAT (x) A FUND(x))

For example, the Platonist would argue that at least the empty set is fundamental,
while the Aristotelian would claim that each set-theoretical object, including the
empty set, depends for its existence on some non-mathematical entity or fact.’

WEAK FUND would moreover restore the analogy between physical and
mathematical entities: the Platonist might indeed argue that both in the physical and
in mathematical case, some entities are fundamental, while all the others depend on
the fundamental base; the common structure that the Platonist would ascribe to both
the physical realm and the mathematical realm is pictured below:

Fundamental level

The Aristotelian would contend, by contrast, that while reality might contain
physical entities at its fundamental level, mathematical objects should be placed
at upper levels of the metaphysical ladder: the Aristotelian would argue, that is,
that there are no mathematical objects at the fundamental level, or, more in general,
that mathematical objects are not as fundamental as physical entities; the analogy
between physical and mathematical objects would therefore break down.

If this is right, it also shows that the putative difference between the Platonist,
which asserts WEAK FUND, and the Aristotelian, that denies it, can be very subtle,
since they might disagree only on whether a single mathematical objects, e.g. the
empty set, is fundamental. Provided that the Platonist accepts (b) — and, hence,
that she denies STRONG FUND - the Platonist and the Aristotelian would only
disagree on (a). However, diverging on (a) seems to be less a substantial difference
between platonism and aristotelianism than what the traditional characterization of
the former view might intuitively suggest.

9 In order to make room for this latter view, fundamentality might be ascribed to truths rather than
to objects. For a similar strategy, cf. Schwartzkopff (2011, 371-2).
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2.4 Varieties of Aristotelianism

A reviewer asks whether there is any difference between aristotelianism as articu-
lated here and more standard forms of mathematical naturalism.'® My answer is that
it depends on how both naturalism and aristotelianism are understood.

Naturalism in mathematics can be understood either as an ontological claim or
as a methodological claim. Ontological Naturalism is the view that the objects of
mathematics are natural. Methodological Naturalism, by contrast, is the view that
the authoritative standards in the philosophy of mathematics are those internal to
mathematics itself, those of natural sciences (e.g. physics), or both.

A form of methodological naturalism is usually advocated in order to defend
mathematical realism. Paraphrasing Lewis (1991, 59), Johnathan Schaffer writes
for example:

Here, without further ado, is a proof of the existence of numbers:

1. There are prime numbers;
2. Therefore there are numbers.

1 is a mathematical truism. It commands Moorean certainty, as being more credible than
any philosopher’s argument to the contrary.!!

Therefore, methodological naturalism seems to support truth-value realism,
according to which mathematical theorems are in fact true. If one adds that
mathematical statements like 1 and 2 should be interpreted with the logical form
standardly assigned to them by mathematicians, then truth-value realism entails
object realism, i.e. the view that there are mathematical objects.

However, platonism and aristotelianism supposedly agree on which mathemati-
cal objects exist. More precisely, both platonism and aristotelianism are plausibly
committed to the existence of mathematical entities. So, the ontological com-
mitments of platonism are just the same as the commitments of aristotelianism.
Moreover, aristotelianism is also committed to the entities on which mathematical
objects depend. Therefore, aristotelianism is prima facie even less ontological
parsimonious than (traditional) platonism; even so aristotelianism would not be
committed to fundamental mathematical objects.!?

Whether ontological naturalism is entailed by aristotelianism will depend, on
the other hand, on how the relevant notion of dependence between mathematical
and non-mathematical objects is understood. We can indeed distinguish between
(1) semantic, (2) truth-making, and (3) metaphysical varieties of aristotelianism.

10 The reviewer’s question was actually whether there is any difference between Aristotelianism
and empiricism; 1 take empiricism in the sense of Lakatos (1976) to be a sub-species of naturalism,
as I will explain below.

11 Schaffer (2009, p. 357).

12 Note, however, that aristotelianism may also be committed to potential infinity, whereas the
Platonist isn’t; if so, then the Platonist and the Aristotelian would not agree on EXST. I owe this
comment to Gianluigi Oliveri.
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Semantic aristotelianism is the view that mathematical expressions should
be treated as akin to free variables rather than proper names. According to
Pettigrew (2008), the (semantic) Aristotelian claims, for example, that the
terms formed by means of the operator ‘the number of’ are free variables
(or parameters or arbitrary constants), rather than proper names formed by a
term-forming operator flanked by a predicate; arithmetical statements would
then express generalizations over each system of objects with the appropriate
structure, rather than truths about a system of sui generis natural numbers.
Semantic aristotelianism might be interpreted as a form of ontological
naturalism (modulo an assignment of values to free variables), provided that
the domain of interpretation contains only natural entities, and it does not bring
about any commitment to the existence of abstract mathematical objects unless
one is also and independently commitment to their existence. For this reason,
any version of semantic aristotelianism which is compatible with ontological
naturalism denies EXST.
Truth-making aristotelianism is the view that mathematical statements are made
true by non-mathematical entities. According to Cameron (2008), the claim that
the right-hand side and the left-hand side of HP (can be stipulated to) have the
same truth-conditions is better interpreted as saying that the right-hand side has
the same truth-makers as the left-hand side. This opens up two alternatives for
the mathematical realist:

if numbers are needed to make the left hand side true then are needed to make the
right hand side true, and hence aren’t a new ontological commitment; if numbers
aren’t needed to make the right hand side true then they aren’t needed to make the
left hand side true, and aren’t a commitment (and so, a fortiori, they are not a new
commitment)'3

The Aristotelian accepts the second one of these options: what makes true
the right-hand side of HP, i.e. that ' and G are equinumerous, also makes true
the left-hand side, i.e. ‘the number of F is identical with the number of G’.
The truth-making Aristotelian, therefore, is not committed to the existence of
abstract mathematical objects, but only to non-mathematical truth-makers for
mathematical truths, plus to truth-making relations themselves (even if those
relation are ‘thin’ in the sense that can be explained by the semantic properties
of mathematical language).

The question is whether truth-making aristotelianism can underwrite any
sensible version of mathematical realism. Cameron claims indeed that (i) the
sentence ‘there are numbers’ is literally true, and, at the same time, that (ii)
in spite of (i), one’s theory can be free of any commitment to the existence
of numbers, since numbers are not needed to make the sentence ‘there are
numbers’ true.

Metaphysical aristotelianism is the view that mathematical truths metaphys-
ically depend on (as opposed to: semantically depend on) non-mathematical

13 ¢f. Cameron (2008, 12).
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truths (Rosen, 2011, 2016). The metaphysical Aristotelian might claim, for
example, that the right-hand side of an instance of HP, which states that two
concepts are equinumerous, metaphysically grounds its left-hand side, which
states that the numbers of those concepts are identical. Unlike semantic aris-
totelianism, metaphysical aristotelianism interprets mathematical expressions
as proper terms and term-forming operators; unlike truth-making aristotelian-
ism, moreover, metaphysical aristotelianism is committed to the existence of
abstract mathematical objects. However, this last variety of aristotelianism is
also burdened by a commitment to ‘thick’ metaphysical relations obtaining
between mathematical and non-mathematical objects, which cannot be reduced
to the semantic properties of mathematical language.

Which one of those three positions should be preferred will largely depend
on considerations of ontological parsimony. The notion of (relative) ontological
parsimony can be introduced in terms of the ontological commitments of two rival
theories 77 and T5; 77 is more ontologically parsimonious than 75 if the ontological
commitment of 77, i.e. the set of entities to which 77 is ontologically committed,
is a proper subset of the ontological commitment of 7>. Many subscribe to the
principle according to which entities must not be multiplied without necessity.
Less idiomatically, the principle states that ontological parsimony is a virtue which
should guide our choice between rival theories; more precisely, (i) if a theory 77 is
more ontological parsimonious than a theory 7>, T> should not be adopted unless
its higher ontological costs are matched by other theoretical virtues, and (ii) other
things being equal, we should prefer the most parsimonious theory, namely 7.

As seen, only metaphysical aristotelianism is committed to the real existence
of abstract mathematical objects, while semantic aristotelianism and truth-making
aristotelianism are compatible with the view that there are no (sui generis) mathe-
matical entities. Therefore, semantic and truth-making aristotelianism would give
one an advantage with respect to ontological naturalism; in particular, both the
semantic Aristotelian and the truth-making Aristotelian can in principle contend
(modulo an appropriate articulation of their view) that everything that exists belongs
to the natural world of causes and effects. By contrast, the metaphysical Aristotelian
can only argue for a moderate naturalistic claim, according to which everything
is either natural, or metaphysically grounded by the natural (Rosen, 2016, 279).
Vice versa, if aristotelianism is defined (also) in terms of the existence claim,
according to which there are abstract mathematical objects, then only metaphysical
aristotelianism complies with this characterization, while semantic aristotelianism
and truth-making aristotelianism don’t.

Note, moreover, that even if aristotelianism is prima facie less ontological
parsimonious than (traditional) platonism, since it is committed both to mathemat-
ical objects and to the non-mathematical entities on which those objects depend,
aristotelianism posits no fundamental mathematical object. Indeed, ontological
parsimony at the fundamental level is often the main reason to prefer aristotelianism
over platonism. Schaffer argues, for example, that only fundamental entities should
not be multiplied without necessity, and, more precisely, that the maximization
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of the derivative entities that a theory can posit vis-a-vis the minimization of the
fundamental entities that the theory must posit is itself a theoretical virtue which
should guide our preference for theories which are more parsimonious (only) as far
as fundamental entities are concerned (Schaffer, 2015, 647). Once Schaffer’s maxim
is adopted, it gives one a rationale for preferring aristotelianism over traditional
platonism; as Schwartzkopff summarizes the point,

in recent times it has been proposed to rather adhere to a principle one could call Ockham’s
fundamental razor: entia fundamentalia non sunt multiplicanda praeter necessitatem. So
inclined philosophers find no difficulty in extending a welcoming hand to all kinds of
things. The only caveat is that (i) such objects be non-fundamental or derivative, and (ii)
that they ultimately derive from something such philosophers regard as unproblematic. One
such sense of the fundamental vs. derivative distinction can be found in the Aristotelian
tradition, a tradition in which substances are characterized as ontologically independent
(fundamental) objects whereas the properties that inhere in them are said to be ontologically
dependent (derivative) objects.!*

It is worth noting, however, that while semantic and truth-making varieties of
aristotelianism posits no fundamental mathematical objects (since they need not
posit mathematical entities at all), metaphysical aristotelianism is committed both
to relevant non-mathematical entities and to metaphysical relations between those
entities and mathematical objects that are derivative on these latter. Unlike tradi-
tional platonism, however, aristotelianism does not posit fundamental mathematical
objects.

Let’s take stock. Semantic aristotelianism and metaphysical aristotelianism are
both compatible with mathematical naturalism, i.e. the view that mathematical
objects are natural; metaphysical naturalism, by contrast, is only compatible with
a qualified form of naturalism, according to which mathematical objects are either
natural, or grounded in the natural.

2.5 Conclusions

Recall that mathematical platonism is traditionally defined as the view that (1)
there are abstract mathematical objects, and that (2) those objects are independent
of human beings and their thoughts, language, and practices. I showed that (1)
and (2) fail to distinguish platonism from various forms of aristotelianism in the
philosophy of mathematics, namely the view that mathematical entities depend for
their existence and their properties on non-mathematical ones. I then argued that
platonism is best defined in terms of metaphysical fundamentality, as the view that
there are (at least some) fundamental mathematical objects.

14 Schwartzkopff (2011, 353).
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Chapter 3 )
Hofweber’s Nominalist Naturalism Chock or

Eric Snyder, Richard Samuels, and Stewart Shapiro

Abstract In this paper, we outline and critically evaluate Thomas Hofweber’s
solution to a semantic puzzle he calls Frege’s Other Puzzle. After sketching the
Puzzle and two traditional responses to it—the Substantival Strategy and the
Adjectival Strategy—we outline Hofweber’s proposed version of Adjectivalism.
We argue that two key components—the syntactic and semantic components—of
Hofweber’s analysis both suffer from serious empirical difficulties. Ultimately, this
suggests that an altogether different solution to Frege’s Other Puzzle is required.

Keywords Thomas Hofweber - Number words - Frege’s other puzzle - The
substantival strategy and the adjectival strategy

3.1 Introduction

This paper is part of a larger project in which we develop an empirically informed,
methodologically naturalistic philosophy of mathematics. Our primary concern is
with the natural numbers of basic arithmetic, and the idea that empirical results from
linguistics, psychology, and cognitive neuroscience may shed light on their nature
and our knowledge of them. Our basic conviction is that such a methodologically
naturalistic approach can help illuminate traditional core questions that preoccupy
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philosophers of mathematics: Do numbers exist, and if so, what are they like? Can
we have mathematical knowledge, and if so, how? Indeed, we maintain that such
methods can help where more traditional, a priori methodologies cannot.

Against the backdrop of this larger project, the present paper serves two main pur-
poses. First, we provide a detailed exploration of one influential, methodologically
naturalistic project of the sort that we seek to pursue: Thomas Hofweber’s (2005,
2007, 2016) analysis of number talk and thought, and his defense of nominalism
based on that analysis. In doing so, we pay special attention to the manner in
which Hofweber’s account — in contrast to more traditional, a priori approaches —
relies heavily on linguistic considerations in support of this controversial ontological
thesis.

Second, we argue that Hofweber’s attempt to recruit such considerations to
this end is unsuccessful. Hofweber’s account is presented as a series of empirical
hypotheses, regarding ordinary number-related talk and thought. As such, it is both
appropriate — and charitable — to assess his view by the same standards operative in
empirical research more generally, including linguistics. Like all local empirical
hypotheses, Hofweber’s hypotheses should be assessed (among other things) in
terms of their ability to generate accurate predictions, and the extent to which they
cohere with more basic background theory. By these standards, however, Hofwe-
ber’s proposal performs poorly. Specifically, insofar as those hypotheses make
concrete empirical predictions, they appear to be largely incorrect. In other cases,
however, it is not clear whether Hofweber’s hypotheses make concrete predictions,
or how they may cohere with contemporary linguistic theory. Ultimately, the upshot
will be that the best available linguistic evidence does not support nominalism,
contra Hofweber.

The rest of the paper proceeds as follows. In Sect. 3.2, we sketch a linguistic
puzzle, known as Frege’s Other Puzzle, which Hofweber’s analysis is primarily
designed to solve. We explain how the Puzzle arises, along with two popular
philosophical strategies for solving it. In Sect. 3.3, we outline Hofweber’s solution,
breaking the analysis developed into two components: a syntactic component
and a semantic component. In Sect. 3.4, we criticize both components, arguing
that neither stand up to empirical scrutiny. We conclude the paper in Sect. 3.5,
where we summarize our conclusions and tease out some broader implications for
methodologically naturalistic approaches to the philosophy of mathematics.

3.2 Frege’s Other Puzzle

Hofweber’s analysis is framed largely around a certain linguistic puzzle. In the
Grundlagen, Frege (1884, §57) notes that number expressions such as ‘four’ are
used in two importantly different ways:

Since what concerns us here is to define a concept of number that is useful for science, we

should not be put off by the attributive form in which number also appears in our everyday
use of language. This can always be avoided. For example, the proposition ‘Jupiter has four
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moons’ can be converted into ‘The number of Jupiter’s moons is four’. Here the ‘is’ should
not be taken as a mere copula ... Here ‘is’ has the sense of ‘is equal to’, ‘is the same as’ ...
We thus have an equation that asserts that the expression ‘the number of Jupiter’s moons’
designates the same object as the word ‘four’.

Specifically, ‘four’ has an “attributive form* witnessed in (la), and an apparently
referential form witnessed in (1b).

(1) a. Jupiter has four moons.
b. The number of Jupiter’s moons is four.

On its face, the function of ‘four’ in (la) is to count the collection of moons
belonging to Jupiter. In this respect, ‘four’ resembles non-referential expressions
like the adjective ‘large’ or the determiner ‘no’ in (2):

(2) Jupiter has large/no moons.

On the other hand, (1b) looks like a prototypical identity statement. As such,
it apparently involves singular terms, namely ‘the number of Jupiter’s moons’ and
‘four’. In this respect, ‘four’ in (1b) resembles the name ‘Wagner’ in (3), due to
Hofweber (2007).

(3) The composer of Tannhduser is Wagner.

This suggests that ‘four’ in (1b) is a numeral, or a name of a number.

At the same time, there are clear semantic differences between attributive
‘four’ and the numeral ‘four’. For example, numerals require singular morphology,
whereas attributive ‘four’ requires plural morphology.

4) a Which one of these three numbers is even? [Let’s see. Three isn’t, and five
isn’t ...] Four {is/??are}.
b. How many of these eight numbers are even? [Let’s see. Two is, and six is
...] Four {??is/are}.

Also, while attributive ‘four’ is typically acceptable with modifiers like ‘exactly’
and ‘almost’, the numeral ‘four’ is not.

(5) a. {Four/??Almost four} is an even number.
b. {Four/Almost four} children clapped.

Furthermore, numerals license entailments like (6a), but attributive ‘four’ does not.!

(6) a. Mary divided four by two yesterday morning F Mary divided four by two
yesterday
b. Mary cooked exactly four eggs yesterday morning ¥ Mary cooked exactly

four eggs yesterday

! This follows a referentiality test due originally to Kratzer and Heim (1998).
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All of this suggests that ‘four’ serves different, and indeed incompatible, semantic
functions: counting collections and naming numbers.

The above is puzzling because, as Felka (2014) notes, it seems that different
occurrences of the same expression in semantically equivalent statements ought to
serve the same semantic function. Consider the names ‘John’ and ‘Mary’ in (7a)
and (7b), for instance.

(7) a.John saw Mary at the mall.
b. Mary was seen by John at the mall.
c. John saw a Mary at the mall.

Plausibly, (7a) and (7b) are equivalent because the names serve the same semantic
function in those examples, namely to refer. On the other hand, neither (7a) nor (7b)
is equivalent to (7c), where ‘Mary’ is being used instead as a predicate.

This leads to what Hofweber (2005) calls Frege’s Other Puzzle, which consists
of the following four seemingly plausible, but jointly inconsistent, premises.

(FOP1) (la) and (1b) are semantically equivalent.
(FOP2) The different occurrences of ‘four’ in (1a) and (1b) are witness to the

same expression, namely ‘four’.

(FOP3) The different occurrences of ‘four’ in (1a) and (1b) serve different
semantic functions.

(FOP4) Different occurrences of an expression occurring in semantically
equivalent statements serve the same semantic function.

FOP1 is taken for granted by everyone in the relevant debate. It is possible,
though ultimately unsatisfactory, to deny this premise, however. For example, one
could point out that while the follow up to (8a) is perfectly consistent, the follow up
to (8b) seems contradictory.

(8) a. Jupiter has four moons. In fact, the number of Jupiter’s moons is sixty-two.
b. ?7? The number of Jupiter’s moons is four. In fact, the number of
Jupiter’s moons is sixty-two.

Based on facts like (8a), Horn (1972) argues that attributive uses have lower-
bounded truth-conditions, so that (la) is true if Jupiter has at least four moons.
Conversely, (8b) might be taken to show that (1b) has two-sided truth-conditions,
and so is true if instead Jupiter has exactly four moons. If so, then FOP1 would be
false. Call this the Non-Equivalence Strategy.

The obvious problem with the Non-Equivalence Strategy is that even if we
grant that facts like (8) demonstrate the non-equivalence of (la,b), we can easily
reformulate the Puzzle by substituting (9) for (1b) in the original formulation.

(9)  Jupiter has exactly four moons.

The follow up to (10) sounds just as contradictory as that of (8b),
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(10) 77 Jupiter has exactly four moons. In fact, Jupiter has sixty-two moons.

and yet the Non-Equivalence Strategy would be inapplicable to this new formula-
tion.

It is also possible, though ultimately untenable, to deny FOP2, thus resulting in
what we might call the Homonym Strategy. According to it, the different occurrences
of ‘four’ in (la) and (1b) are witnesses to altogether different expressions, ones
which just happen to be spelled and pronounced alike. In general, we do not expect
homonyms like the noun ‘fire’ and the verb ‘fire’ to be acceptably intersubstitutable.

(11)  a. The rapid oxidation of combustible materials is fire.
b. Let’s {fire/??the rapid oxidation of combustible materials} John.

Similarly, Hofweber notes that substituting ‘the number of Jupiter’s moons’
for ‘four’ in (1a) leads to unacceptability despite (1b) appearing to establish their
coreferentiality.

(12)  Jupiter has {four/??the number of Jupiter’s moons} moons.

However, because homonyms are typically spelled and pronounced alike as a
matter of historical accident, we do not expect their meanings to be related. Thus,
the problem with the Homonym Strategy is that the occurrences of ‘four’ in (1a) and
(1b) are clearly semantically related; both tell us something about how many moons
belong to Jupiter.

3.2.1 Two Strategies of Analysis

Given the failures of the Non-Equivalence Strategy and the Homonym Strategy,
it appears that we must reject either FOP3 or FOP4. It turns out that nearly all
approaches within the philosophical literature deny the former, including Frege
(1884), Wright (1983), Hodes (1984), Hofweber (2005, 2007, 2016), Moltmann
(2013), and Felka (2014). In fact, denying FOP3 is the hallmark of two opposing
positions Dummett (1991, p. 99) dubs the Substantival Strategy and the Adjectival
Strategy:

Number-words occur in two forms: as adjectives, as in ascriptions of number, and as nouns,
as in most number-theoretic propositions. When they function as nouns, they are singular
terms, not admitting of the plural; Frege tacitly assumes that any sentence in which they
occur as adjectives may be transformed either into an ascription of number ... or into a
more complex sentence containing an ascription of number as a constituent part. Plainly,
any analysis must display the connection between these two uses ... Evidently, there are two
strategies. We may first explain the adjectival use of number-words, and then explain the
corresponding numerical terms by reference to it: this we may call the adjectival strategy.
Or, conversely, we may explain the use of numerals as singular terms, and then explain
the corresponding number-adjectives by reference to it; this we may call the substantival
strategy.
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According to the Substantival Strategy, or Substantivalism, both occurrences of
‘four’ in (1a,b) are in fact numerals, and the apparently non-referential use witnessed
in (1a) is to be explained in terms of the genuinely referential use witnessed in (1b).
In contrast, according to the Adjectival Strategy, or Adjectivalism, both occurrences
of ‘four’ in (1a,b) are either adjectives or determiners,” and the apparently referential
use witnessed in (1b) is to be explained in terms of the genuinely non-referential use
witnessed in (1a).

The most well-known defender of Substantivalism was, of course, Frege (1884).
His primary interest was in developing an ideal logical language suitable for science.
In such a language, the sole semantic function of a number expression would be
to refer to numbers. Thus, non-referential uses of number expressions in natural
language are misleading with respect to their ideal semantic function. Consequently,
Frege proposes “converting” the attributive form witnessed in (1a) into the singular
term witnessed in (1b). To do so, he first proposes paraphrasing (1a) as (1b), and
then (equivalently) analyzes the latter as (13).

(13)  #[Ax. moon-of-Jupiter(x)] = 4

Here, ‘#’ is a cardinality-function mapping a concept @ to a natural number n
representing how many objects fall under @. Thus, (13) is an identity statement:
it equates a certain number, namely the number of moons belonging to Juptier, with
the natural number referenced by the numeral ‘4’, namely four. Thus, on Frege’s
proposal, (1a) and (1b) should both be analyzed as identity statements, at least for
the purposes of an ideal logical language.

Now, as stated, Frege’s Other Puzzle is a puzzle about natural language: How
can one and the same expression serve seemingly different semantic functions in
equivalent statements? On the other hand, Frege’s analysis was not intended to
be a piece of natural language semantics. Rather, as the above quotation from
Grundlagen §57 makes clear, his primary objective was to “define a concept
of number that is useful for science”. Thus, the question arises as to whether
Substantivalism might be viewed as an independently viable strategy for rejecting
FOP3.

Indeed, something like this appears to be rhetorically suggested by Crispin
Wright (1983). Speaking of Frege’s example abstraction principle in (14),

(14) VL.YhL.D()=D(p) <11 ~ 1
(For any lines /1 and I, the direction of /; is identical to the direction of I,
justin case /1 and [, are parallel)

Wright (1983, p. 31-32) says the following:

2 The label “Adjectivalism” is due to Dummett (1991). It is somewhat unfortunate, however,
because it suggests that what Frege calls “attributive uses” like (1a) must be adjectives. However,
the intended view is that “attributive uses” are non-referential expressions, and this is consistent
with ‘four’ in (la) being an adjective or a determiner. Despite this, we follow the literature in
retaining the label “Adjectivalism”.
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The reductionist idea was that since the right-hand contains no apparent direction-denoting
singular term, we can take it that the apparent reference to a direction on the left-hand
side is mere surface grammar, a misleading nuance. But why should we not turn that way of
looking at things on its head? What is there to prevent us saying that, since the left-hand side
does contain an expression referring to a direction, it is the apparent lack of reference to a
direction on the right-hand side which is potentially misleading, or ‘mere surface grammar’?
... Why should it not be possible for a sentence containing no isolatable part which refers to
a particular object nevertheless achieve, as a whole, a reference to that object, as is attested
by the fact that it is equivalent to a sentence in which such a reference is explicit?

Wright’s suggestion appears to be that although (15b) but not (15a) contains explicit
singular terms referring to directions, because those statements are equivalent, we
may nevertheless analyze ‘line /;” and ‘line /;’ in (15a) as singular terms referring
to directions.

(15) a.Line [; is parallel to line ;.
b. The direction of /; is identical to the direction of /5.

Applying similar reasoning to (1a,b), although ‘four’ in (1a) appears to serve a non-
referential semantic function, because (la,b) are equivalent, we may nevertheless
analyze ‘four’ in (1a) as a singular term referring to a number.

However, the obvious problem with this proposal is that because equivalence
is symmetric, the equivalence of (1a,b) will not alone substantiate Substantivalism.
Indeed, a similar point is made by Dummett (1991, p. 109), while criticizing Frege’s
Substantivalism:

If it is legitimate for analysis so to violate surface appearance as to find in sentences
containing a number-adjective a disguised reference to a number considered as an object,
it would necessarily be equally legitimate, if it were possible, to construe number-theoretic
sentences as only appearing to contain singular terms for numbers, but as representable,
under a correct analysis of their hidden underlying structure, by sentences in which number-
words occurred adjectivally... If the appeal to surface form, in sentences of natural language,
is not decisive, then it cannot be decisive, either, when applied to sentences of number
theory. Frege has merely expressed a preference for the substantival strategy, and indicated
a means of carrying it out.

The same criticism applies to Wright’s rhetorical suggestion: if we are allowed
to ignore surface syntax and analyze the apparent adjective or determiner ‘four’ in
(1a) as a genuine singular term in virtue of the equivalence of (1a,b), then it should
be equally legitimate to ignore surface syntax and analyze the apparent numeral
in ‘four’ in (1b) as a non-referential adjective or determiner, thus vindicating
Adjectivalism.

In more recent times, Adjectivalism has become by far the more popular
solution to Frege’s Other Puzzle. Although there are different versions of the
strategy available, perhaps the most influential is the one articulated and defended
by Hofweber. As we will see, Hofweber’s solution has potentially far reaching
consequences not merely for the meanings of number expressions, but also for
ontology. In the next section, we will outline Hofweber’s Adjectivalism, along with
its significance for issues central to the philosophy of mathematics.
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3.3 Hofweber’s Adjectivalism

The version of Adjectivalism defended by Hofweber (2005, 2007, 2016) is complex,
consisting of several (controversial) theses. For exegetical clarity, it can be factored
it into three major components: a syntactic component, a semantic component, and
a cognitive component. Since our primary concern here is with the linguistic aspects
of Hofweber’s analysis, we will be less concerned overall with the cognitive theses
Hofweber puts forward. In what follows, we will sketch these linguistic theses,
the solution they recommend to Frege’s Other Puzzle, and its implications for the
ontology of numbers.

3.3.1 The Syntactic Component: Determiners, Extraction,
and Focus Effects

The key semantic fact about natural language determiners is that they cannot
function referentially. No empirically respectable semantics would claim that ‘no’,
for instance, can refer to an object. Rather, determiners combine with nouns like
‘moon(s)’ to form quanticational phrases such as ‘no moons’, denoting second-order
properties (or generalized quantifiers).

(16)  Jupiter has no/some moons.
So, if ‘four’ in (1a) is a determiner,
(1) a. Jupiter has four moons.

then it too must function non-referentially. Thus, Hofweber’s first key linguistic
contention is that ‘four’ in (la) is in fact a determiner, one which has a meaning
given within Generalized Quantifier Theory (GQT; Barwise and Cooper (1981)).
On one variation, this is given in a7n:3

7)  [[four]] = {<S,8’>: S, C U and SN S| =4}
(‘four’ denotes pairs of sets S and S’ such that S and S’ are subsets of the
domain U and the cardinality of the intersection of S and S’ is exactly
four)

3(17) is in fact the denotation of ‘four’ assumed by Breheny (2008). In GQT, cardinal determiners
are actually given lower-bounded truth conditions, so that ‘four’ denotes a relation between sets
whose intersection has a cardinality of at least four:

(i) [[four]] = {<S,5">: 5,8’ C Uand [S N S| > 4}

The reason for adopting a two-sided analysis instead will become apparent in the next section,
when we consider paraphrases of basic arithmetic equations like ‘three and two is five’.
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According to (17), the determiner ‘four’ denotes a relation between sets whose
intersection has a cardinality of exactly four. As such, ‘four’ in (la) is thus a
prototypical non-referential expression. Indeed, as noted just above, expressions
of this type not only typically fail to function referentially, they cannot function
referentially.*

Hofweber’s primary reason for thinking that ‘four’ in (la) is a determiner, as
opposed to an adjective, appears to be the undoubted success of GQT. GQT is the
predominant analysis of natural language quantification within linguistic semantics,
thanks in large part to its ability to state and predict various linguistic universals,
specifically generalizations about possible determiner meanings across languages.
Thus, Hofweber (2007, p. 3—4) says:

In contemporary natural-language semantics the uses of ‘four’ as in [(1a)] are pretty well
understood, and ‘four’ is usually considered to be a determiner, an expression of the same
kind as ‘some’, ‘many’, and ‘all’. Such expressions are not disguised referring terms.

Indeed, if ‘four’ in (1a) is a determiner, then GQT’s success provides an excellent
reason for thinking that it expresses a relation between sets.

Hofweber’s second key linguistic contention is that ‘four’ in (1b) is the very same
quantificational determiner witnessed in (1a).

(1)  b. The number of Jupiter’s moons is four.

According to Hofweber (2005, p. 211), this is due to what he calls extraction.

In Hofweber [2007], I argue that this focus effect can’t be explained if one thinks that [(1b)]
is both syntactically and semantically an identity statement with two (semantically) singular
terms. But it can be explained if [(1b)] has a different syntactic structure, one that results
from extracting the determiner and placing it in an unusual position that has a focus effect
as a result. Thus, in [(1b)] ‘four’ is a determiner that has been “moved” out of its usual
position.

The idea appears to be that through “extraction”, ‘four’ in (1a) gets “moved” from
its “usual [determiner] position”, thereby “placing it in an unusual [post-copular]
position” in (1b). Crucially, and despite this, ‘four’ in (1b) retains its semantic
function as a non-referential determiner. To quote Hofweber (2005, p. 211): “The
word ‘four’ is the same in [(1a)]) and [(1b)].” Consequently, ‘four’ in both (1a,b)
denotes a property of sets, not a number.

Hofweber’s main source of evidence for “extraction” concerns so-called focus
effects witnessed in examples like (18).

(18) a. Johan likes soccer.
b. What Johan likes is soccer.
c. It is Johan who likes soccer.

Whereas (18a) is acceptable in response to both ‘Who likes soccer?” and ‘Which
sport does Johan like?’, (18b) is only acceptable in response to the latter, while

4 See Landman (2003).
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(18c) is only acceptable in response to the former. Contrast this with prototypical
identity statements like (19), which apparently do not give rise to focus effects.

(19)  Cicero is Tully.

Indeed, (19) is perfectly fine in response to both ‘Who is Tully?” and ‘Who is
Cicero?’.

In contrast, (1b) does apparently display focus effects: while (1a) is acceptable
in response to both ‘Which planet has four moons?’ and “What belongs to Jupiter?’,
(1b) is only acceptable in response to the former. What this shows, according to
Hofweber, is that (1b) is not a genuine identity statement, contra Frege (1884).
Moreover, it is indirect evidence that (1b) results from “extraction” since, if it were
an identity statement, we would expect to see no focus effects.

3.3.2 The Semantic Component: Numerals and Semantically
Bare Determiners

To summarize, according to Hofweber, ‘four’ in (1b) is the same non-referential
determiner witnessed in (1a), thanks to “extraction”. As such, the truth of neither
(1a) nor (1b) implies the existence of a number, no more so than (16) does.

(16)  Jupiter has no/some moons.

However, “extraction” is a construction-specific syntactic operation, presumably:
it applies to sentences broadly having the structure of (la), and returns sentences
broadly having the structure of (1b). As such, it is not operative in numerical
equations like (20).

(20) Three and two is five.

After all, it is hard to see how (20) could result from anything similar to (1a), where
the numerals ‘three’, ‘two’, and ‘five’ feature originally as determiners. But then
there is no obvious reason for thinking that the numerals in (20) are non-referential
expressions. In other words, it would appear that (20) straightforwardly entails the
existence of numbers.

To this end, Hofweber distinguishes between two kinds of bare determiners, or
determiners occurring without overt accompanying nouns, such as ‘most’ in (21).

(21) How many boys kicked the ball? Most kicked the ball.

Although ‘most’ does not occur explicitly restricted by the noun ‘boys’ in (21), it is
implicitly understood that way. In other words, the continuation of (21) is interpreted
as ‘Most boys. .. . Contrast this with ‘most’ in (22), where there is no antecedent
noun available.
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(22)  Most is/are more than none.

Rather than claiming something about most boys, or most people, or whatever, (22)
is intended to be generic: whatever it is that we’re talking about, most is more
than none. Thus, Hofweber calls determiners like ‘most’ in (22) semantically bare
determiners.

Hofweber’s third key linguistic contention is that the number expressions in
(22) are really semantically bare determiners, not genuine names of numbers. Put
differently, (22) has something like the logical form informally suggested in (23),
where X is a noun phrase restricting the determiners ‘three’, ‘two’, and ‘five’, and
‘GEN’ is a genericity operation.

(23) GEN: [three X and two (more) X are five X]
(In general, three things and two (more) things are five things)

Hofweber’s primary piece of linguistic evidence for (23) is that arithmetic
equations can be parsed in two ways, namely in the singular or in the plural, similar
to (22).

(24) Three and two is/are five.

Furthermore, (24) also resembles (22) in that both are entirely general: no matter
what we are talking about, three and two are five, just as most are more than none.
As a result, despite surface syntactic appearances, (24) does not involve relating
two first-order objects (3 and 2) to a third first-order object (5), through a first-order
operation (4). Rather, it actually involves counting objects, though in an entirely
general way.

This raises another question, however: What guarantees that things (the X’s)
being counted in (24) do not overlap. This is crucial to getting the truth-conditions
for (24) correct, of course: if A = {a,b,c}, B = {a,b}, and C = {d,e}, then |]ANB| =
2, |]A UBJ| =3, and |A U C| = 5. So, what guarantees that (22) behaves like |A U
C|, rather than |A N B| or |[A U B|? To this end, Hofweber appeals to a well known
distinction between cumulative (or ‘non-boolean’) conjunction and propositional
(or ‘boolean’) conjunction. Examples of the latter include (25a-c), while examples
of the former include (26a-c), due to Krifka (1999).

(25) a. John and Mary slept.
b. Mary sang and danced.
c. This cocktail is cheap and refreshing.

(26) a.John and Mary met at the mall.
b. This concoction is beer and lemonade.
c. That flag is entirely green and white.

(25a—c) can all be paraphrased as the conjunction of two propositions. For example,
(25a) can be paraphrased as ‘John slept and Mary slept’. In contrast (26a) cannot
mean that John met at the mall, and also Mary met at the mall, just as (26b) cannot
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mean that this concoction is beer, and also this concoction is lemonade. What
(26a—c) show is that cumulative conjunction can coordinate expressions of different
semantic types — names, predicates, and modifiers.

Thus, Hofweber’s fourth linguistic contention is that ‘and’ in (22) and (24) is
cumulative conjunction involving semantically bare determiners, where non-overlap
is guaranteed through “ellipsis, or a pragmatic mechanism, or a form of “free
enrichment,” or something else” (Hofweber (2005, p. 193)). Thus, Hofweber likens
(24) to (27).

(27)  She only had an apple and dessert.

Normally, an utterance of (27) would be judged misleading if she happened to have
only an apple, even though apples may serve as perfectly fine desserts. Presumably,
according to Hofweber, this too is a function of “ellipsis, or a pragmatic mechanism,
or a form of “free enrichment,” or something else”. The important point is that
just as an utterance of (27) apparently presupposes non-overlapping extensions for
‘apple’ and ‘dessert’, an utterance of (24) apparently presupposes non-overlapping
extensions of ‘three Xs’ and ‘two Xs’.

3.3.3 Frege’s Other Puzzle and the Consequences for Ontology

Given that Hofweber defends a version of Adjectivalism, it is hardly surprising that
the premise he denies in Frege’s Other Puzzle is FOP3.

The different occurrences of ‘four’ in (1a) and (1b) serve different semantic
functions.

Specifically, despite ‘four’ occurring as a determiner in (1a) and as a name in (1b),
it serves the same non-referential semantic function of a determiner in both.

(1) a. Jupiter has four moons.
b. The number of Jupiter’s moons is four.

As aresult, (1b) does not entail the existence of a number.

Contrast this with Frege’s analysis,> where (1b) immediately implies the exis-
tence of a number thanks to the referential function of the numeral ‘four’. That is,
(28a) entails (28b), paraphrased in English as (28c¢).

(28) a. #[Ax. moon-of-Jupiter(x)] = 4
b. In. #{Ax. moon-of-Jupiter(x)] =n An=4
c. There is a number which is the number of Jupiter’s moons, namely four.

5 The same applies to Wright (1983) and Hale (1987).
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Since (28c) seemingly wears its ontological commitment to numbers on its
sleeves, and since (1a) entails (1b), Frege’s analysis apparently implies that in virtue
of successfully counting some moons, thereby establishing the truth of (28a), we
can validly infer that numbers exist, i.e. (28b). This is puzzling, as the question of
whether numbers exist is a longstanding, difficult question central to the philosophy
of mathematics. Thus, it would be surprising if an answer to that question could be
so easily obtained. Accordingly, this is known in the literature as the Easy Argument
for Numbers.®

Hofweber (2007)’s solution appeals to the same Adjectivalist analysis responsi-
ble for debunking Frege’s Other Puzzle: because ‘four’ in (1b) is a non-referential
determiner, we cannot infer from it that a number exists, at least not in a substantial
sense relevant to ontology. Ultimately, and more generally, Hofweber’s view is that
no apparently referential use of number expression is in fact referential, including
their use in arithmetic statements, such as (24).

(24) Three and two is/are five.

Thus, in the end, Hofweber defends a version of what Dummett (1991) calls the
Radical Adjectival Strategy: no occurrence of e.g. ‘four’ or ‘4’ is a genuine singular
term.” Consequently, not only does our ordinary talk of counting moons fail to entail
an ontology of numbers, but so also does the mathematician’s talk of the number
four being even.

In summary, Hofweber’s Adjectivalism may thus be viewed as a sustained
defense of nominalism with respect to the natural numbers. All apparent reference
to numbers is just that — apparent. Upon further linguistic investigation, we discover
that explaining arithmetic truths does not require positing numbers. That’s because,
despite surface appearances, arithmetic discourse is not about numbers as abstract
objects and the various properties those objects may have, but rather an elaborate
form of counting, something we all learned to do as children. What’s more,
arithmetic discourse is true — indeed objectively and necessarily so — in virtue of
the meanings of the bare numerical determiners involved. Thus, unlike with various
versions of fictionalism,> Hofweber’s Adjectivalism is not an error theory with
respect to number talk.

Of course, the strength of Hofweber’s defense of nominalism depends wholly on
the empirical adequacy of the analysis proposed. In the next section, we will sketch
objections to the two components of the analysis considered here — the syntactic
component and the semantic component. Ultimately, we will argue that neither
survives empirical scrutiny.

6 See e.g. Balcerak-Jackson (2013) and Snyder (2017).

7 The details are complex and beyond the scope of a single paper. But see Hofweber (2016).

8 Roughly, fictionalism is the view that numerals in arithmetic discourse genuinely have the
function of naming numbers, but since numbers do not exist, all arithmetic discourse is either

false or else involves widespread presupposition failure. See e.g. Hodes (1984), Yablo (2005), and
Leng (2010).
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3.4 Problems with Hofweber’s Adjectivalism

Despite its influence, Hofweber’s Adjectivalism has received a fair amount of
criticism in the philosophical literature. This has focused largely on the syntactic
component of Hofweber’s analysis, specifically “extraction” and the evidence pur-
porting to motivate it. In this section, we will consider those objections, while also
developing novel objections to the comparatively neglected semantic component
of Hofweber’s analysis. The upshot will be that Hofweber’s key linguistic theses
highlighted in Sect. 3.3 are empirically problematic.

3.4.1 Problems with Extraction

Much of the extant criticism of Hofweber’s Adjectivalism revolves around “extrac-
tion”, i.e. the linguistic mechanism responsible for “moving” ‘four’ from its position
in (1a) to its position in (1b). Recall the quote from Hofweber (2005, p. 211):

[(1b)] has a different syntactic structure, one that results from extracting the determiner and
placing it in an unusual position that has a focus effect as a result. Thus, in [(1b)] ‘four’ is a
determiner that has been “moved” out of its usual position.

It is natural to interpret this talk of “movement” as an instance of the same
kind of “movement” familiar from transformational theories of syntax (e.g. trans-
formational grammar, government and binding theory, and minimalist syntax). (29)
provides a prototypical illustratration, known as “extraposition”, where underlining
indicates the expression “moved”, and the blank indicates the position out of which
“movement” is assumed to occur.

(29) a. Something that we weren’t expecting happened.

b. Something ____ happened that we weren’t expecting.

As a result, ‘that we weren’t expecting’ in (29b) becomes focused, much like
post-copular ‘four’ in (1b) on Hofweber’s analysis. It should thus be unsurprising
that some of Hofweber’s detractors, chiefly Brendan Balcerak-Jackson (2013) and
Friederike Moltmann (2013), have interpreted “extraction” as a transformational
mechanism responsible for “rearranging® the syntactic material in (1a), ultimately
resulting in (1b).

The problem, according to these detractors, is that the actual syntactic principles
or operations that would be required to do this kind of “rearranging” would not
be recognized by contemporary transformational theories, and their postulation
would be highly dubious. For one thing, unlike with (29), (1b) clearly contains
material missing in (1a): ‘the’, ‘number’, ‘of’, and *-’s’. Conversely, there is material
contained in (1a) that is missing in (1b): ‘has’. Even if there were “movement” of
the parts of (1a), no other known transformational mechanism would also delete and
add material in the manner required. Rather, as Balcerak-Jackson notes, it would
seem far more plausible to hold that (la,b) are simply different sentences, with
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(1b) attempting to paraphrase (la). Yet without (1b) resulting from some kind of
“rearrangement” of (la), there would be no guarantee that post-copular ‘four’ in
(1b) is the same non-referential determiner (1a), thereby undermining Hofweber’s
case for some version of Adjectivalism.

In response, Hofweber (2014) accuses these detractors of misinterpreting
“extraction”, by assuming that it must involve some kind of transformational
“movement”. To quote Hofweber (2014, p. 264):

But I made no such proposal. I never talk about transformation rules, or deriving [(1b)]
from [(la)] via some mysterious sentence level transformation. In fact, ‘transform’ or
‘transformation’ don’t even appear in my article.

To help clarify, Hofweber further distinguishes between two possible interpre-
tations of “extraction”, one involving what he calls “displacement”, and the other
involving what he calls “transformation”. To continue the quote:

To bring out the difference, we can say that ‘extraction’ could be understood either as
displacement or as transformation. Displacement occurs when a phrase appears in a position
contrary to where it naturally belongs, that is, contrary to its canonical position. This is
still metaphorical, of course, but at least talk of displacement rather than extraction might
suggest less that this is to be understood as sentence level transformation. Transformation
occurs when one sentence gets turned into another, via some syntactic rules. I proposed
that in [(1b)], but not in [(1a)], ‘four’ is displaced and as a result we can see, in outline,
why [(1b)] has a focus effect, while [(1a)] does not. Balcerak Jackson instead takes me
to propose that [(1a)] gets transformed into [(1b)]. All that is needed for the argument,
however, is displacement, not transformation.

Thus, according to Hofweber, the Balcerak-Jackson/Moltmann criticism is ulti-
mately a straw man, requiring a “transformation”-based interpretation of “extrac-
tion”, rather than a “displacement”-based interpretation.

Suppose so. The obvious question now becomes: What exactly is “displace-
ment”, and what does it have to do with ‘four’ in (la) getting “moved” into
post-copular position in (1b)? Unfortunately, Hofweber has little to offer in response
to these questions. To quote Hofweber (2014, p. 265) again:

In Hofweber (2007) I did not propose any particular view of how the syntax for the relevant
examples was supposed to work more precisely. I made no proposal about the precise
syntactic structure of [(1b)], nor about the relationship between focus and syntax in general,
nor did I endorse a particular framework in syntactic theory. I don’t say this proudly, I
wish I had such views to offer. But the argument that [(1b)] is not an identity statement is
rather neutral with respect to the more precise syntactic mechanisms that underlie all this.
It is motivated more by the data for a theory than the theory itself. It relied on a notion
of extraction/displacement that was metaphorical, but clear for many cases, its connection
to syntactic focus, and the relationship between focus and identity statements, but not any
particular syntactic theory, certainly not transformational grammar.

A similar sentiment is expressed in Hofweber (2016, p. 41):

Talk of “extraction” or “displacement” or “movement” is a theory-neutral metaphor that we
don’t need to spell out now. What is crucial for us instead is that constructions of this kind
give rise to a syntactic focus effect, not how precisely the syntactic connection to focus is
to be understood.
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So, “displacement”, and thus “extraction”, is only intended to be a metaphor, not
a fleshed out syntactic mechanism situated within the background of a particular
syntactic theory, including transformational theories.

In some ways, it is understandable that Hofweber might want to back off from
making any specific proposals regarding how exactly “extraction” is to be under-
stood. After all, doing so might lead to potentially falsifiable empirical predictions,
and it might also hold his analysis hostage to cohering with other elements of a
background syntactic theory. On the other hand, because Hofweber’s solution to
Frege’s Other Puzzle rests wholly on the empirical viability of “extraction”, what’s
required, minimally, is some assurance that this syntactic mechanism, whatever it
is, is empirically motivated.

There are two points we’d like to emphasize here in this connection. First,
it should be stressed that “movement” of any sort is highly controversial within
contemporary syntactic theory. That’s because there are numerous mainstream
syntactic theories whose formulation is grounded principally upon the explicit
rejection of “movement”’, notably “representational theories”, including head-driven
phrase structure grammars, lexical functional grammars, construction grammars,
and most dependency grammars. The latter attempt to explain the same phenomena
covered by the postulation of “movement” within transformational theories, but via
other means, e.g. feature passing.

Secondly, and largely for this reason, talk of “movement” is typically understood
as presupposing some version of transformational syntax. This includes “displace-
ment”. To illustrate, consider the following example from Abels (2017), where again
underlining indicates the expression “moved”, and gaps indicate the “canonical
position” from which it is “displaced”:

(30) a. (I know that) John will drink absinthe.
b. I know what John will drink ___.

c. Absinthe, John will drink ___.
d. the beverage which John will drink ___

As Abels explains, the “canonical” word order for English sentences, as illus-
trated in (30a), is subject-auxiliary-verb-object. In (30b-d), the underlined expres-
sion is the object, thus revealing that it does not occur within its “canonical”
position — it has been “displaced”. This is also presumably the notion of “displace-
ment” Hofweber (2014) has in mind: “a phrase appears in a position contrary to
where it naturally belongs, that is, contrary to its canonical position.”

If so, then it is very difficult to see how Hofweber’s distinction between
“displacement” and “transformation” addresses the crux of the Balcerak-
Jackson/Moltmann criticism. Hofweber’s central thesis is that ‘four’ in (1b) results
from “displacement”, and as such is the very same determiner witnessed in (1a).
For this to make sense, ‘four’ needs to be “moved” out of its “‘canonical position”
in (la) , presumably as the head of a determiner phrase, to post-copular position
in (1b). Minimally, then, as with typical cases of “displacement” like (30b-d), we
should expect (la) to share much of its syntactic material with (1b), contrary to
fact. Thus, independent of any particular version of transformational syntax and
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corresponding syntactic principles or operations which might underlie this kind
of “movement”, it would appear that “displacement” cannot do what Hofweber’s
Adjectivalism requires of it.

In any case, there would appear to be more direct evidence against “extraction”,
independent of how it might be spelled out. Generally speaking, we expect syntactic
operations to apply to expressions of the same categories. For example, we should
presumably be able to replace ‘absinthe’ in (30a) with any other mass noun, thus
leading to a grammatical sentence of the form in (30c). So, if “extraction” is a
syntactic operation, then it should apply to all determiners, not just numerical
determiners. For example, it should apply to ‘no’ and ‘some’ in (31).

(31)  Jupiter has {no/some/four} moons.

Yet, as Balcerak-Jackson also points out, the result of applying “extraction” to
‘no’ and ‘some’ would be clearly unacceptable:

(32) The number of Jupiter’s moons is {??no/??some/four}.

More generally, it appears that no uncontroversial determiner can occur in post-
copular position of constructions like (1b). Why is this?
In response, Hofweber (2014, p. 266) says the following:

Balcerak Jackson contends that my account does not explain why similar constructions do
not seem to work with other determiners. That is true, my account does not explain this, and
neither does, I may add, Balcerak Jackson’s own account outlined at the end of his paper.
But it is an overstatement that my account makes this “mysterious” (p. 451). The account
simply leaves this open, but it is certainly compatible with an explanation that comes form
a difference in the syntactic behavior among determiners or adjectives in general. That not
all determiners behave the same syntactically is a well-known fact.

Thus, Hofweber’s response to this objection looks similar to his response to the
previous objection: because “extraction” is not intended to be situated within any
particular syntactic theory, it is not intended to offer an explanation of contrasts
like (32). Rather, (32) is apparently witness to a more general phenomenon, of
which Hofweber unfortunately offers no specific examples, that “not all determiners
behave the same syntactically”.

The problem with this response, as with the first, is that it does not actually
address the argument at issue. The concern is not with whether Hofweber’s
analysis can explain contrasts like (32), but rather with what it apparently pre-
dicts. Specifically, the claim is that Hofweber’s analysis seemingly makes a false
empirical prediction: all determiners should be subject to “displacement”, and yet no
uncontroversial determiners can acceptably occur in post-copular position, similar
to ‘four’ in (1b). Now, Hofweber’s response could be that his analysis does not
make this prediction, because it makes no predictions, in virtue of not being situated
within any particular syntactic theory. But this would ignore the crucial fact about
syntactic operations more generally: they apply to expressions of the same category,
independent of whichever syntactic theory they happen to be embedded within.
Thus, independent of which specific syntactic operation is assumed to be responsible
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for “displacement” (e.g. “Inner Merge”), Hofweber’s analysis appears to make an
important, demonstrably false prediction.

Furthermore, note that Balcerak-Jackson’s original observation readily extends
to numerous further constructions. For example, uncontroversial determiners cannot
appear bare in predicative positions more generally:

(33) Jupiter’s moons are {??no/??some/four} (in number).
Nor can they occur as the complement of the verb ‘number’:
(34) Jupiter’s moons number {??no/??some/four}.

Nor can they generally be “stacked”, i.e. co-occur bare.

(35) All {?’7n0/7?some/four} moons of Jupiter are large.

Finally, and perhaps most significantly, determiners cannot occur as names.
In contrast, color expressions such as ‘green’ can occupy these various positions,
and they can also apparently function as names.

(36) a. Jupiter has green moons.
b. The color of Jupiter’s moons is green.
c. Jupiter’s moons are green (in hue).
d. Jupiter’s moons are colored green.
e. All green moons of Jupiter are large.
f. Green is a color.
g. The color green is Mary’s favorite.

What’s more, such expressions are standardly assumed within linguistic seman-
tics to be adjectives, and, in any case, they are certainly not determiners. Fur-
thermore, their use in constructions like (36f) is also standardly assumed to be
referential, so that ‘green’ in (36f) is a genuine singular term.’

Here’s a simple argument, then, building on Balcerak-Jackson’s original obser-
vation. On the one hand, number expressions differ from other uncontroversial
determiners in numerous important respects. On the other hand, they pattern exactly
like certain adjectives in those same respects. Furthermore, merely announcing
that “not all determiners behave the same syntactically” will not suffice to explain
these similarities and differences, given their breadth. Rather, it is tempting to
conclude based on these observations that Hofweber’s analysis rests principally on
a syntactic misclassification — number expressions, at least in their “attributive” use,
are adjectives, not determiners.

It is thus worth noting that according to Hofweber (2016, p. 124), the issue of how
exactly number expressions should be syntactically classified is ultimately irrelevant
to the success of his solution to Frege’s Other Puzzle.

9 See e.g. Kennedy and McNally (2010), McNally (2011), and McNally and de Swart (2011).
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There is some controversy about whether number words in the relevant uses are determiners,
modifiers, or adjectives. This is also an issue which is insignificant for us here... What
ultimately matters for our discussion is that number words in their determiner use can
form complexes... and that they are not themselves referring expressions in this use.
Whether they are in the end adjectives, determiners, or form a separate class of their own,
is secondary.

Presumably, the thought is that because both determiners and adjectives (used
attributively or predicatively) function non-referentially, so long as ‘four’ (1b) also
functions that way, Hofweber’s proposed solution to Frege’s Other Puzzle will go
through.

However, we have just seen at least some (apparent) adjectives have genuinely
referential uses — again, witness (36f). In fact, there are analyses on which ‘four’
in (1b) arguably has this same referential semantic function, in virtue of the same
general semantic operations responsible for rendering ‘green’ in (36f) a singular
term.'® What’s more, (36) is standardly taken to show that one and the same
expression (‘green’) can perform different semantic functions — it can function
e.g. as a predicate, a modifier, and as a singular term. Moreover, all “extraction”
apparently guarantees is that, to quote Hofweber (2005, p. 211) again, “the word
‘four’ is the same in both [(1b)] and [(1a)]”. If so, then this alone will not guarantee
that ‘four’ in (1b) has the same semantic function as four in (1a). Rather, if ‘four’
in (1a,b) is an adjective, then nothing obviously precludes the possibility that ‘four’
in (1b) is a genuine singular term, despite being “displaced”. In contrast, because
it is a distinguishing feature of determiners that they cannot function referentially,
no such possibility arises if ‘four’ in (1a) is instead a determiner. It thus appears
that the classification of number expressions in their “attributive” use is far more
empirically significant than Hofweber recognizes.

3.4.2 Problems with Focus Effects

In addition to “extraction”, Hofweber’s analysis relies crucially on a number of
dubious semantic assumptions. One concerns the role of so-called focus effects.
Hofweber’s argument, recall, is that because genuine identity statements do not
exhibit focus effects, but (1b) does, (1b) cannot be a genuine identity statement.
However, Brogaard (2007) points out that (3), which Hofweber (2007) claims to be
a genuine identity statement, exhibits similar focus effects.

(3) The composer of Tannhduser is Wagner.

In particular, (3) would be an appropriate answer to the question “Who composed
Tannhduser?’ but not “Who is Wagner?’ or “What did Wagner do?’. Thus, it appears
that exhibiting focus effects is insufficient to show that (1b) is not an identity

10 See Snyder (2017).
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statement. In that case, it could well be that (1b) entails the existence of a number,
just as Frege (1884)’s analysis suggests.

Indeed, it is worth emphasizing in this connection that even if constructions like
(1b) and (3) are not identity sentences, this alone will not establish that post-copular
‘four’ in (1b) functions non-referentially. In fact, it has been argued by many that
constructions like (1b) and (3) are better understood as specificational sentences,
in the sense of Higgins (1973).!! Higgins originally distinguished between at least
three forms of the English copula, including:

(37)  a. Cicero is Tully. (equative)
b. Cicero is bald. (predicational)
¢. The most famous Roman orator is Cicero.  (specificational)

Equative sentences are prototypical identity statements like (37a), equating the
referents of two singular terms. Predicational sentences such as (37b) predicate a
property such as being bald of the subject. Finally, specificational sentences such as
(37c¢) specify an individual under a certain description, e.g. the most famous Roman
orator.

The semantic motivations for this taxonomy are well known.'?> Moreover, it
might be reasonably thought that Hofweber could appeal to that taxonomy not only
to explain the apparent focus effects in (1b) and (3), but also to establish a different
version of Adjectivalism which does not rely on the dubious syntactic operation
of “extraction”. In fact, this is broadly the strategy pursued by other Adjectivalists,
including Moltmann (2013) and Felka (2014). On these analyses, specificational
sentences more generally express question-answer pairs, via ellipsis.'> For example,
the pre-copular material in (37¢c) expresses an indirect question corresponding to
‘Who is the most famous Roman orator?’, while the post-copular material expresses
an answer to that question, namely ‘Cicero is the most famous Roman orator’, all
through ellipsis.

Similarly, it has been argued that the pre-copular material in (1b) expresses an
indirect question corresponding to ‘What is the number of Jupiter’s moons?’, an
answer to which is expressed by the post-copular material, namely ‘Jupiter has four
moons’, again through ellipsis. Since the pre-copular material expresses a question,
it is little wonder that we see focus effects. After all, by hypothesis the question
expressed concerns the cardinality of Jupiter’s moons, not what belongs to Jupiter
more generally. Better yet, because post-copular ‘four’ has the same non-referential
function witnessed in (1a), (1b) would not entail an ontology of numbers.

However, for this suggestion to succeed, it needs to be that specificational
sentences really do express question-answer pairs in virtue of ellipsis. Yet this
is not the only analysis of specificational sentences available. In fact, there is an
alternative analysis on which the copula is systematically ambiguous between equa-

11 See Moltmann (2013), Felka (2014), and Snyder (2017).
12 See Mikkelsen (2005).
13 See Schlenker (2003).
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tive, predicational, and specificational meanings.'* In particular, the specificational
copula receives the meaning in (38), where ‘y’ ranges over individual concepts, i.e.
functions from worlds to individuals.

(38) AXAY<s e AW. X(W) =x

On this analysis, the pre-copular material in (37c) expresses an individual
concept, namely a function from worlds w to whoever is the most famous Roman
orator in w, while the post-copular name ‘Cicero’ is a genuine singular term. Thus,
(37¢) will be actually true if Cicero is in fact the most famous Roman orator.

Applying the same analysis to (1b) would suggest that the pre-copular material
expresses an individual concept, i.e. a function from worlds w to the maximal
number of Jupiter’s moons in w, while post-copular ‘four’ functions as a genuine
singular term. Hence, even if (1b) is not a genuine identity statement, i.e. a copular
sentence involving the equative copula, it needn’t follow that post-copular ‘four’
functions non-referentially. In other words, it needn’t follow that some version of
Adjectivalism is correct. Ultimately, then, focus effects lend no direct support for
Adjectivalism of any kind.

3.4.3 Problems with Numerals

Consider (39), where ‘four’ apparently functions as a numeral, i.e. a name:
(39) Four is an even number.

Clearly, ‘is an even number’ is a predicate. Given standard semantic assumptions,
it should thus be something which either takes ‘four’ as an argument and returns a
truth-value, or else is taken by ‘four’ as an argument and returns a truth-value. In
the first case, ‘four’ would be a referential-type expression, presumably referring to
a number. In the second case, it would function as a generalized quantifier, denoting
a set of sets, one of which would include the even numbers. In either case, it would
appear that making semantic sense of the truth of (39) requires acknowledging the
existence of numbers.

Of course, this realist conclusion might be avoided if ‘four’ functions instead as
a semantically bare determiner, in which case ‘four’ and ‘is an even number’ would
have different semantic types than their surface syntax suggests. The problem,
however, is that determiners without accompanying nouns generally have the wrong
semantic type to occupy argument positions, as witnessed by the unacceptability of
‘every’ in (40a,b).

(40) a. {??Every/Everyone/Every person/Mary} is happy.
b. John loves {??every/everyone/every person/Mary}.

14 See Partee (1986b) and Romero (2005).
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Rather, in order to occupy argument positions, determiners need to combine with a
noun like ‘person’ to form a generalized quantifier like ‘every person’.

Hofweber is seemingly aware of this issue. Indeed, speaking about an example
similar to (39), Hofweber (2005, p. 209-210) says:

I will cover only the case of the relationship between sentences like [(1a,b)]. It will not be a
general account of the singular-term use of numerals. It will still leave open what is going
on in certain other uses of number words as singular terms in statements that are neither
singular basic arithmetical equations nor of the same kind as [(1b)].

This is rather surprising, given that Hofweber’s analysis is designed to handle
cases like (24), which also apparently involve numerals.

(24) Three and two is/are five.

The latter, recall, is analyzed as (23), so that the apparent numerals in (24) are in
fact generically quantified semantically bare determiners.

(23) GEN: [three X and two (more) X are five X]
[In general, three things and two (more) things are five things]

Hofweber’s contention is that because determiners more generally are non-
referential expressions, (24) does not entail commitment to numbers. Thus, one
might reasonably think that something similar could be said for cases like (39),
so that ‘four’ similarly functions as a semantically bare determiner.

However, as Rothstein (2017) observes, this suggestion would make numerous
incorrect predictions. First, ‘count’ is ambiguous between two senses, roughly
corresponding to what Benacerraf (1965) calls intransitive counting and transitive
counting.15 These are witnessed respectively in (40a,b), due to Rothstein.

(40) a. Icounted to thirteen (??things/??people/??books).
b. I counted thirteen (things/people/books).

Thus, as the labels suggest, transitive ‘count’ requires a direct object, where
intransitive ‘count’ does not. Semantically, this suggests that while transitive ‘count’
has an essentially relational meaning, intransitive ‘count’ does not. Thus, consider
Rothstein’s (41a,b):

(41) a.Icounted thirteen. — Thirteen what?
b.?? I counted to thirteen. — Thirteen what?

Secondly, (42a) and (42b) are clearly not synonymous, as (42a) is true but not
(42b).

15 To a first approximation, intransitive counting consists in reciting the numerals in their canonical
order —1, 2, 3,...” In contrast, transitive counting consists in the counting of things. That is, when
transitively counting we use the numerals to answer ‘how many’-questions, roughly by establishing
a one-to-one correspondence between an initial segment of those numerals and a collection of
objects being counted.
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(42) a. Two is an even prime.
b. Two things are even primes.

Third, numerals and bare determiners differ in their agreement features. Specif-
ically, whereas numerals require singular morphology, bare determiners require
plural morphology.

(43) a. Which one of these three numbers is Mary’s favorite? Four {is/??are}.
b. How many people are coming to the party? Four {??is/are}.

And the same holds for numerals in comparative constructions, as Rothstein points
out.

(44) Four {is/??are} bigger than three.

Finally, Rothstein observes examples like (45), where one number expression
clearly modifies another.

(45) Two twos are four, three twos are six.

None of this is to be expected, however, if all numerals are really semantically
bare determiners. In that case, for instance, (42a) would entail (42b), contrary to
fact. Rothstein (2017, p. 28) thus reasonably concludes: “Together, these data show
that... there are cases where a bare cardinal numerical must be a singular term.”

If so, and if their most plausible candidate referents are numbers, as argued by
Hale (1987), then it would appear that the truth of e.g. (39) straightforwardly entails
the existence of a number. In other words, despite Hofweber’s proposed solution to
the Easy Argument involving (1b), which crucially relies on ‘four’ functioning as a
semantically bare determiner, there would appear to be an equally “easy argument”
involving (39), for which that solution does not apply.

To be fair, Hofweber does offer an explanation as to why (apparent) numerals
like ‘four’ in (38) at least appear to function as genuine singular terms. The
explanation appeals to what he dubs cognitive type-coercion. In essence, cognitive
type-coercion is the cognitive analog of type-shifting. However, whereas type-
shifting is typically taken to “coerce” the meanings of natural language expressions,
“shifting” their lexical meanings (at least) in the presence of type-mismatches,
cognitive type-coercion instead operates exclusively on mental representations,
within the language of thought. To quote Hofweber (2016, p. 137):

The process of cognitive type coercion forces a representation to take on a certain form so
that a certain cognitive process can operate with this representation. Systematically lowering
the type of all expressions (or the mental analogue thereof) is a way of doing this, and the
difference between our ability to reason with representations involving low types rather than
high types explains why this type lowering occurs in the case of arithmetic.

The basic idea appears to be that because number expressions occurring within
arithmetic statements have the complex semantic type of a determiner, they are
difficult to semantically process. Consequently, we are forced to “coerce” the
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corresponding mental representations in such a way that our reasoning mechanisms
can “get a grip”.

It is in virtue of this kind of cognitive coercion, apparently, that numerals in
arithmetic statements seemingly function as singular terms. To quote Hofweber
(2016, p. 137) again:

Note that according to the cognitive type coercion account we merely change the form of the
representation. We do not replace one representation with another one that has a different
content. We take the same representation and change its syntactic form so that our reasoning
mechanism can operate on it. The content of what is represented remains untouched by this.
To put it in terms of the language of thought, we change the syntax of a representation so
that our reasoning mechanism can get a grip on these representations. Other than that we
leave it the same. And what holds good for mental representations will hold good, mutatis
mutandis, for their linguistic expression in language. The singular arithmetical statements
are the linguistic expression of thoughts involving type lowered mental representations.

It is crucial to recognize that the kind of “coercion” being alluded to here is
not type-shifting of the more familiar semantic variety.'® If it were, then numerals
occurring within arithmetic statements would need to function as genuine singular
terms, thus resulting in a different version of the Easy Argument. Presumably, this
is why, according to Hofweber (2016, p. 141), “semantic type coercion [i.e. type-
shifting] is the second best attempt to solve Frege’s Other Puzzle.” Regardless,
the claim appears to be that within the language of thought, numerals occurring in
arithmetic statements like (24), or their cognitive analogs, do function referentially,
and this presumably explains why they appear to function referentially in English as
well. If so, then perhaps this explanation can be extended to numerals as they figure
in arithmetic statements like (39) as well.

We have criticized the notion of cognitive type-coercion and its role within
Hofweber’s larger nominalist program at length elsewhere.!” Here, we will limit
our discussion to how this might help explain contrasts like (40)—(45). The latter
are presented (by a linguist) as semantic contrasts, intended to reveal a difference
in the semantic function of numerals (referential) and numerical modifiers (non-
referential), in English. However, by hypothesis, cognitive type-coercion operates
on mental representations within the language of thought, not the meanings of
English expressions. The claim appears to be that because we cognitively lower
the “types” of corresponding representations at least when dealing with arithmetic
statements, this explains why (apparent) numerals in English seem to function
referentially.

The question here is: How, exactly? As far as we can tell, Hofweber offers no
concrete answer. However, perhaps the most obvious answer is that the judgments
reported in (40)—(45) do not reflect anything about the meanings of the English
expressions at all, but rather their cognitive analogs within Mentalese. If so, then
a primary question for Hofweber’s account, as we see it, is this: What prevents

16 See especially Partee (1986a).
17 See Snyder et al. (2021).
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all (purported) semantic judgments from likewise reflecting something about
Mentalese? After all, presenting contrasts like (40)—(45) is a primary empirical
tool available to semanticists, with the presumption being that such contrasts report
native speakers’ intuitions about the meanings of natural language expressions. So,
if such contrasts actually fail to reveal what linguists standardly take them to reveal,
then why should this response, if correct, not rob linguistic semantics of its very
empirical foundations?

3.4.4 Problems with Semantically Bare Determiners

We have seen that there are problems with analyzing numerals as semantically bare
determiners. To this end, it is worth reexamining Hofweber’s original justification
for claiming that ‘four’ in (1a) is a determiner in the first place. It relies crucially,
recall, on the observation that GQT is the predominant analysis of natural language
determiners. Thus, if ‘four’ in (1a) is also a determiner, then all other things being
equal, we ought to assume that it has the non-referential meaning GQT attributes to
it. Specifically, we should assume that it has something like the meaning in (17).

A7)  [lfour]] = {<S5,5’>: 5,8 C U and [SN S| =4}
(‘four’ denotes pairs of sets S and S” such that S and S’ are subsets of the
domain U and the cardinality of the intersection of S and S’ is exactly
four)

There are two kinds of problems with this reasoning, however. First, it does
not follow that just because GQT analyzes ‘four’ in (la) as a determiner having
a meaning like that in (17), the lexical meaning of ‘four’ must be as specified in
(17). Secondly, even if ‘four’ in (la) — or indeed every occurrence of ‘four’ — had
the meaning suggested in (17), it would not follow that the semantic evidence best
supports nominalism.

As for the first problem, it turns out that there are good, independent reasons
for thinking that the GQT analysis in (17) is independently flawed. Consider the
following example from Krifka (1999), which is ambiguous between at least a
distributive interpretation given in (46b), and cumulative interpretation given in
(46¢):

(46) a. Three boys ate seven apples.
b. Three boys each ate seven apples, so that twenty one total apples were eaten.
c. Three boys together ate seven apples, so that seven total apples were eaten.

The problem, as Krifka explains, is that because (17) only predicts distributive
interpretations, it cannot capture the cumulative interpretation. This suggests that
even if GQT is the predominant analysis for natural language quantificational
determiners, this provides no compelling reason for thinking that we should adopt
that same analysis for ‘four’ in (1a), let alone (1b).
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In fact, in order to explain how cumulative interpretations are possible, Kritka
argues that “attributive” uses of ‘four’ must be understood as adjectives expressing
cardinal properties of sums of countable individuals, or “atoms” in the sense of Link
(1983). On this analysis, “attributive” ‘four’ in (1a) has something like the meaning
suggested in (47), where ‘# is a cardinality function mapping sums to numbers
representing their atomic parts.

@47) APAx.#(x) =4 A P(x)
Ultimately, this affords the following analysis of (46a):18
(48) 3Ix.Fy. #(x) = 3 A boys(x) A #(y) =T A apples(y) A ate(x,y)

The cumulative interpretation paraphrased in (46¢) then arises if the predicate is
interpreted collectively, so that three boys together ate seven apples.

To be clear, the claim is not that “attributive” uses of number expressions must
be adjectives rather than determiners because no version of the GQT analysis
could, in principle, capture cumulative interpretations. Rather, the semantic case
for “attributive” ‘four’being an adjective is far more comprehensive in scope.
Specifically, as many have noted, ‘four’ has many interrelated uses apart from the
“attributive” use witnessed in (1a), including e.g. those in (49).

(49) a. Jupiter’s moons are four (in number).
b. No four moons of Jupiter orbit Saturn.

Thus, a desideratum on any empirically adequate semantics for number expressions
is that it should not only provide meanings appropriate for all of these uses, but also
explain how those meanings are related."”

Thus, the widespread assumption within linguistic semantics is that number
expressions are polymorphic, taking on different semantic types in different syntac-
tic environments, thanks to type-shifting (see e.g. Partee (1986a), Landman (2003,
2004), Geurts (2006), Scontras (2014), Kennedy (2015), Rothstein (2013, 2017),
and Snyder (2017)). What’s more, on all such analyses, ‘four’ in (1a) and (52a,b)
is an adjective, and for good reason. On its face, ‘four’ in (49a) is a predicate, a
seemingly appropriate meaning for which is given in (50).

(50) [[four]] = Ax. #(x) =4

The meaning suggested in (47) — appropriate for (49b) — is then derivable from (50)
via an independently motivated type-shifting principle, as are meanings potentially
appropriate for (1a) and (1b).?° Crucially, however, determiners cannot function as
predicates or modifiers — cf. Sect. 3.4.1. This would be entirely mysterious if the

18 This presupposes type-shifting. See e.g. Rothstein (2017), and Snyder (2017).
19 Cf. Geurts (2006) and Rothstein (2013).
20 See Snyder (2017).
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lexical meaning of ‘four’ were that of a determiner since, in that case, the type-
shifting principles responsible for generating meanings appropriate for ‘four’ in
(49a,b) would likewise generate meanings appropriate for all determiners. In other
words, this would incorrectly predict that all determiners can in fact function as
predicates and modifiers, contrary to fact.

In short, the problem is not that the GQT analysis provides the wrong meaning
for ‘four’ in (1a) — in fact, a meaning equivalent to (17) can be generated from (47)
or (50) via commonly accepted type-shifting principles. Rather, the problem is with
the inference potentially drawn based on (17): because GQT analyses ‘four’ in (1a)
as denoting a relation between sets, lexically ‘four’ must be a determiner having that
same meaning. This is a non-sequitur, as should now hopefully be clear. Yet without
some such assumption in place, it simply does not follow that ‘four’ in (1b) must
also have this meaning, even if, to repeat the quote from Hofweber (2005, p. 211)
again, “the word ‘four’ is the same in [(1a)] and [(1a)]”.

All of this points towards two important observations relevant to Hofweber’s
nominalist program. First and foremost, contrary to what Hofweber apparently
assumes, it is not uncontroversial that “attributive” uses of number expressions,
such as ‘four’ in (la), are quantificational determiners to be analyzed on the model
of GQT. Recall the quote from Hofweber (2007, p. 3—4):

In contemporary natural-language semantics the uses of ‘four’ as in [(1a)] are pretty well
understood, and ‘four’ is usually considered to be a determiner, an expression of the same
kind as ‘some’, ‘many’, and ‘all’.

A similar sentiment is expressed in Hofweber (2016, p. 123):

As it turns out, [GQT] works perfectly well, at least for the cases we are considering here,
and it is widely accepted.

It is not clear on what empirical grounds Hofweber could justifiably make either
of these assertions. In fact, the first, also endorsed in Hofweber (2016), seemingly
belies an understanding of the current state of research within contemporary
linguistic theory: the best, most current available evidence points towards ‘many’
being an adjective, not a determiner (see e.g. Rett (2008), Solt (2009), Wellwood
(2018), and Snyder (2020)).2! Again, just because ‘many’ was analyzed as denoting
a relation between sets in Barwise and Cooper (1981), it does not follow that it must
be a determiner having that lexical meaning.

More to the point, as the citations above indicate, GQT was not the only analysis
of number expressions available at the time of publishing Hofweber (2005), and
there was already ample evidence available suggesting that number expressions
are better understood as adjectives. Furthermore, while there has been a growing
consensus among linguists towards that conclusion ever since, virtually all of
this research presupposes, contra Hofweber, that number expressions can function

21 For one thing, unlike all prototypical determiners, ‘many’ has a comparative and superlative
form — ‘more’ and ‘most’, respectively — and is gradable — cf. ‘very/so/how many’.
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referentially.>> Thus, it would appear that Hofweber’s pronouncements regarding
the current state of research within linguistic semantics are at best misleading.

A second significant fact about the polymorphic analyses mentioned above is
that they presuppose an independent domain of numbers, to serve as the range of
the cardinality function ‘#’. Specifically, ‘#’ is a measure function, or function from
entities to numbers. What’s more, this features in all meanings relevant to cardinal
uses of ‘four’, including (1a) (cf. (48)). The implication is that even if “attributive”
uses do not overtly reference numbers, the metalanguage in which the semantics is
formulated is clearly committed to their existence.

However, the same can be said for the GQT analysis. Specifically, (17) contains
a numeral (‘4’), the referent of which assumed to be a number. In fact, GQT makes
rampant use of such numbers to provide a unified analysis of determiner meanings.
These include e.g. ‘at least four’, ‘between four and six’, and ‘four out of five’,
which explicitly involve number expressions, as well as e.g. ‘many’, ‘most’, and
‘infinitely many’, which do not.?3 Thus, even if ‘four’ in (1a) had the non-referential
meaning attributed in (17), since the metatheory of GQT is committed to numbers,
any theorist evoking GQT is also committed to their existence.>* What’s more, those
numbers are not obviously eliminable in favor of something else, e.g. the language
of first-order quantificational logic. After all, one of the original motivations for
GQT was to provide a uniform analysis of quantificational expressions, including
those which are known to be unanalyzable in terms of first-order quantificational
logic, e.g. ‘infinitely many’.

In short, even if the lexical meaning of ‘four’ were that provided in (17), and even
if this was the meaning witnessed in (1a,b), it still would not follow that our ordinary
number-talk does not involve a commitment to numbers, at least at the metasemantic
level. More generally, even if all occurrences of number expressions, including their
apparent use as numerals in arithmetic statements, were quantificational determiners
to be analyzed on the model of GQT, it would not follow that making semantic sense
of number talk more generally supports nominalism.

22 In fact, the only counterexample we are aware of, which happens to be directly informed by,
and formulated partially in response to, Hofweber (2005), is Ionin and Matushansky (2006).
Incidentally, this also happens to be the target of the semantic arguments mentioned in Sect. 3.4.3.

23 See Barwise and Cooper (1981).

24 An anonymous reviewer observes that the same argument would extend to sets, which should
be just as objectionable from a nominalist perspective, but that this kind of commitment might be
avoided by appealing to a pluralist metalanguage, perhaps following Boolos (1985). As far as we
know, whether all of GQT can be recovered within a pluralist metalanguage is an open question,
though McKay (2006) makes progress in this direction. Even so, the question would remain as to
whether an empirically adequate, nominalist-friendly pluralist semantics for number expressions
could be formulated, something which some of us have cast doubt on in other work (e.g Snyder
and Shapiro 2021).
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3.5 Conclusion

We have argued that neither linguistic component of Hofweber’s analysis of ordi-
nary number talk survives empirical scrutiny. Specifically, the syntactic component
fails in virtue of the empirical implausibility of the operation posited (“extraction”),
while many of the distinctive semantic theses put forward by Hofweber are
empirically problematic. These include:

(ST1) “four’ in (1a) is a non-referential determiner, to be analyzed on the model of
GQT.

(ST2) ‘four’ in (1b) has the same non-referential meaning witnessed in (1a).

(ST3) Numerals, or at least those occurring in arithmetic statements, are semanti-
cally bare determiners.

Some of these problems arguably stem from an initial syntactic misclassification
encoded in (ST1), namely that ‘four’ in Frege’s (la) is a determiner, rather than
an adjective. Without that initial assumption in place, (ST2) clearly doesn’t follow,
even if we grant “extraction”. On the other hand, we have seen that it is potentially
important for Hofweber’s larger program that ‘four’ in (1a) be seen as a determiner,
as at least certain adjectives appear to have genuinely referential uses, unlike all
known determiners.

Furthermore, in addition to the numerous problems noted for analyzing numerals
in arithmetic statements as semantically bare determiners, the empirical motivation
for (ST3) is further weakened once we recognize that a variety of expressions can
be coordinated in a manner seemingly resembling (51).

(51) Three and two is five.

Consider the examples in (52), for instance, respectively involving color expres-
sions, measure phrases, and bare nouns.

(52) a.Red and blue is purple.
b. Two feet and twelve inches is one foot.
c¢. Horseradish and ketchup is cocktail sauce.

Naively, all four examples have a distinctly “combinatory” feel: the result of
combining the pre-copular things results in the post-copular thing. Seen this way,
nothing about (51) itself forces the conclusion that the number expressions involved
are (semantically bare) determiners, and thus non-referential expressions. In fact, the
expressions in (52a—c) are commonly assumed within linguistic semantics to have
genuinely referential uses.>> What’s more, it has been argued, notably by Rothstein
(2013, 2017), that the same semantic operation responsible for the referentiality of
the expressions in (52) — nominalization — is also responsible for the referentiality

25 See e.g. Scontras (2014) for measure phrases, and Chierchia (1998) for bare nouns.
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of numerals. Thus, given that a uniform, compositional analysis of (51) and (52a-
¢) is independently desirable, providing an empirically adequate semantics for (51)
might well require that the apparent numerals involved are genuine singular terms.?%

All of this casts significant doubt on the empirical motivations for Hofweber’s
Adjectivalism, and with it the proposed resolutions of Frege’s Other Puzzle and the
Easy Argument. Ultimately, this highlights the difficulties inherent in the sort of
empirically informed methodological naturalism that Hofweber’s project intends to
engage in.

In our view, Hofweber’s analysis is thus perhaps best viewed as an impressive
exploration of an intriguing linguistic hypothesis that, if true, could have significant
ontological consequences for the philosophy of mathematics. Specifically, if all
uses of number expressions could be viewed as non-referential determiners, then
making semantic sense of number talk more generally might not require an ontology
of natural numbers. It’s just that, given the best available linguistic evidence, the
antecedent of this conditional is highly implausible. The takeaway lesson is that
insofar as one seeks to engage in this sort of methodological naturalism, as we intend
to do, one must ignore prior metaphysical predilections and let the empirical chips
fall where they may.
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Chapter 4 )
Exploring Mathematical Objects from e
Custom-Tailored Mathematical Universes

Ingo Blechschmidt

Abstract Toposes can be pictured as mathematical universes. Besides the standard
topos, in which most of mathematics unfolds, there is a colorful host of alternate
toposes in which mathematics plays out slightly differently. For instance, there are
toposes in which the axiom of choice and the intermediate value theorem from
undergraduate calculus fail. The purpose of this contribution is to give a glimpse
of the toposophic landscape, presenting several specific toposes and exploring their
peculiar properties, and to explicate how toposes provide distinct lenses through
which the usual mathematical objects of the standard topos can be viewed.

Keywords Topos theory - Realism debate - Well-adapted language -
Constructive mathematics

Toposes can be pictured as mathematical universes in which we can do mathematics.
Most mathematicians spend all their professional life in just a single topos, the so-
called standard topos. However, besides the standard topos, there is a colorful host
of alternate toposes which are just as worthy of mathematical study and in which
mathematics plays out slightly differently (Fig. 4.1).

For instance, there are toposes in which the axiom of choice and the intermediate
value theorem from undergraduate calculus fail, toposes in which any function R —
R is continuous and toposes in which infinitesimal numbers exist.

The purpose of this contribution is twofold.

1. We give a glimpse of the toposophic landscape, presenting several specific
toposes and exploring their peculiar properties.

2. We explicate how toposes provide distinct lenses through which the usual
mathematical objects of the standard topos can be viewed.
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The usual laws The axiom of Every function
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Fig. 4.1 A glimpse of the toposophic landscape, displaying alongside the standard topos Set two
further toposes

Viewed through such a lens, a given mathematical object can have different
properties than when viewed normally. In particular, it can have better properties
for the purposes of specific applications, especially if the topos is custom-tailored
to the object in question. This change of perspective has been used in mathematical
practice. To give just a taste of what is possible, through the lens provided by an
appropriate topos, any given ring can look like a field and hence mathematical
techniques for fields also apply, through the lens, to rings.

We argue that toposes and specifically the change in perspective provided by
toposes are ripe for philosophical analysis. In particular, there are the following
connections with topics in the philosophy of mathematics:

1. Toposes enrich the realism/anti-realism debate in that they paint the larger picture
that the platonic heaven of mathematical objects is not unique: besides the
standard heaven of the standard topos, we can fathom the alternate heavens of
all other toposes, all embedded in a second-order heaven.

2. To some extent, the mathematical landscape depends on the commonly agreed-
upon rules of mathematics. These are not entirely absolute; for instance, it is
conceivable that from the foundational crisis Brouwer’s intuitionism would have
emerged as the main school of thought and that we would now all reject the law
of excluded middle. Toposes allow us to explore alternatives to how history has
played out.



4 Exploring Mathematical Objects from Custom-Tailored Mathematical Universes 65

3. Mathematics is not only about studying mathematical objects, but also about
studying the relations between mathematical objects. The distinct view on
mathematical objects provided by any topos uncovers relations which otherwise
remain hidden.'

4. In some cases, a mathematical relation can be expressed quite succinctly using
the language of a specific topos and not so succinctly using the language of
the standard topos. This phenomenon showcases the importance of appropriate
language.

5. Toposes provide new impetus to study constructive mathematics and intuitionis-
tic logic, in particular also to restrict to intuitionistic logic on the meta level and
to consider the idea that the platonic heaven might be governed by intuitionistic
logic.

We invite further research on these connections.

We intend this contribution to be self-contained and do not assume familiarity
with topos theory or category theory, having a diverse readership of people
interested in philosophy of mathematics in mind. However, to make this text
more substantial to categorically-inclined readers, some categorical definitions are
included. These definitions can be skipped without impacting the main message of
this contribution.

Readers who would like to learn more details are directed to the survey of
category theory by Marquis (2019) and to a gentle introduction to topos theory
by Leinster (2011). Standard references for the internal language of toposes
include Mac Lane and Moerdijk (1992, Chapter VI), Goldblatt (1984, Chapter 14),
Caramello (2014), Streicher (2004), Shulman (2016), Borceux (1994, Chapter 6)
and Johnstone (2002, Part D).

Other aspects of toposes This note focuses on just a single aspect of toposes, the
view of toposes as alternate mathematical universes. This aspect is not the only one,
nor did it historically come first.

Toposes were originally conceived by Grothendieck in the early 1960s for the
needs of algebraic geometry, as a general framework for constructing and studying
invariants in classical and new geometric contexts, and it is in that subject that
toposes saw their deepest applications. The proof of Fermat’s Last Theorem is
probably the most prominent such application, crucially resting on the cohomology
and homotopy invariants provided by toposes.

In the seminal work introducing toposes by Artin et al. (1972), toposes are
viewed as generalized kinds of spaces. Every topological space X gives rise to
a topos, the topos of sheaves over X, and every continuous map gives rise to a
geometric morphism between the induced sheaf toposes, but not every topos is of
this form. While the open sets of a topological space are required to be parts of the

! The research program put forward by Caramello (2018) provides a further topos-theoretic way
for uncovering hidden relations, though not between objects but between mathematical theories
(Chap. 9).
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space, the opens of toposes are not; and while for open subsets U and V there is only
a truth value as to whether U is contained in V, in a general topos there can be many
distinct ways how an open is contained in another one. This additional flexibility is
required in situations where honest open subsets are rare, such as when studying the
étale cohomology of a scheme as in Milne (2013).

That toposes could also be regarded as mathematical universes was realized only
later, by Bill Lawvere and Myles Tierney at the end of the 1960s. They abstracted
some of the most important categorical properties of Grothendieck’s toposes into
what is now known as the definition of an elementary topos. Elementary toposes
are considerably more general and less tied to geometry than the original toposes.
The theory of elementary toposes has a substantially different, logical flavor, not
least because a different notion of morphism plays an important role. To help
disambiguate, there is a trend to rename elementary toposes to logoses, but this
text still follows the standard convention.

A further perspective on toposes emerged in the early 1970s with the discovery
that toposes can be regarded as embodiments of a certain kind of first-order
theories, the geometric theories briefly discussed on page 71. The so-called clas-
sifying toposes link geometrical and logical aspects and are fundamental to Olivia
Caramello’s bridge-building program set out in Caramello (2018). Geometrically,
the classifying topos of a geometric theory T can be regarded as the generalized
space of models of T; this idea is due to Hakim (1972), though she did not cast her
discovery in this language. Logically, the classifying topos of T can be regarded as
a particular mathematical universe containing the generic T-model, a model which
has exactly those properties which are shared by all models.

Yet more views on toposes are fruitfully employed — Johnstone (2002, pages vii—
viii) lists ten more — but we shall not review them here. A historical survey was
compiled by McLarty (1990).

4.1 Toposes as Alternate Mathematical Universes

A topos is a certain kind of category, containing objects and morphisms between
those objects. The precise definition is recorded here only for reference. Appreciat-
ing it requires some amount of category theory, but, as will be demonstrated in the
following sections, exploring the mathematical universe of a given topos does not.

Definition 1 A topos is a category which has all finite limits, is cartesian closed,
has a subobject classifier and contains a natural numbers object.

Put briefly, these axioms state that a topos should share several categorical
properties with the category of sets; they ensure that each topos contains its own

2 More precisely, this is the definition of an elementary topos with a natural numbers object. Since
this definition is less tied to geometry than Grothendieck’s (as categories of sheaves over sites),
there is a trend to call these toposes logoses. However, that term also has other uses.
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versions of familiar mathematical objects such as natural numbers, real numbers,
groups and manifolds, and is closed under the usual constructions such as cartesian
products or quotients. The prototypical topos is the standard topos:

Definition 2 The standard topos Set is the category which has all sets as its objects
and all maps between sets as morphisms.

Given a topos &, we write “E = ¢” to denote that a mathematical statement ¢
holds in &. The meaning of “& = ¢” is defined by recursion on the structure of ¢
following the so-called Kripke—Joyal translation rules. For instance, the rules for
translating conjunction and falsity read

EE(@ApB) ifft E=a and & kg,
EEL iff & is the trivial topos.

The remaining translation rules are more involved, as detailed by Mac Lane and
Moerdijk (1992, Section VI.7); we do not list them here for the case of a general
topos &, but we will state them in the next sections for several specific toposes. We
refer to “E = ¢ also as the “external meaning of the internal statement ¢”.

In the definition of & = ¢, the statement ¢ can be any statement in the language
of a general version of higher-order predicate calculus with dependent types, with a
base type for each object of & and with a constant of type X for each morphism 1 —
X in &. In practice almost any mathematical statement can be interpreted in a given
topos.> We refrain from giving a precise definition of the language here, but refer
to the references Shulman (2010, Section 7) and Mac Lane and Moerdijk (1992,
Section VI.7) for details.

It is by the Kripke—Joyal translation rules that we can access the alternate
universe of a topos. In the special case of the standard topos Set, the definition
of “Set = ¢” unfolds to ¢ for any statement ¢. Hence a statement holds in the
standard topos if and only if it holds in the usual mathematical sense.

4.1.1 The Logic of Toposes

By their definition as special kinds of categories, toposes are merely algebraic
structures not unlike groups or vector spaces. Hence we need to argue why we
picture toposes as mathematical universes while we do not elevate other kinds of

3 The main exceptions are statements from set theory, which typically make substantial use of a
global membership predicate “€”. Toposes only support a typed local membership predicate, where
we may write “x € A” only in the context of some fixed type M such that x is of type M and A is
of type P(M), the power type of M. We refer to Fourman (1980), Streicher (2009), and Awodey

et al. (2014) for ways around this restriction.
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algebraic structures in the same way. For us, this usage is justified by the following
metatheorem:

Theorem 1 Let & be a topos and let ¢ be a statement such that & = ¢.
If @ intuitionistically entails a further statement \ (that is, if it is provable in
intuitionistic logic that ¢ entails V), then & = .

This metatheorem allows us to reason in toposes. When first exploring a new
topos &, we need to employ the Kripke—Joyal translation rules each time we want
to check whether a statement holds in &. But as soon as we have amassed a stock
of statements known to be true in &, we can find more by deducing their logical
consequences.

For instance, in any topos where the statement “any map R — R is continuous”
is true, also the statement “any map R — RZ? is continuous” is, since there is
an intuitionistic proof that a map into a higher-dimensional Euclidean space is
continuous if its individual components are.

The only caveat of Theorem 1 is that toposes generally only support intuitionistic
reasoning and not the full power of the ordinary classical reasoning. That is, within
most toposes, the law of excluded middle (¢ V —¢) and the law of double negation
elimination (——¢ = @) are not available. It is intuitionistic logic and not classical
logic which is the common denominator of all toposes; we cannot generally argue
by contradiction in a topos.

While it may appear that these two laws pervade any mathematical theory, in
fact a substantial amount of mathematics can be developed intuitionistically (see for
instance Mines et al. (1988) and Lombardi and Quitté (2015) for constructive alge-
bra, Bishop and Bridges (1985) for constructive analysis and Bauer (2012), Bauer
(2013), and Melikhov (2015) for accessible surveys on appreciating intuitionistic
logic) and hence the alternate universes provided by toposes cannot be too strange:
In any topos, there are infinitely many prime numbers, the square root of two is not
rational, the fundamental theorem of Galois theory holds and the powerset of the
naturals is uncountable.

That said, intuitionistic logic still allows for a considerable amount of freedom,
and in many toposes statements are true which are baffling if one has only received
training in mathematics based on classical logic. For instance, on first sight it looks
like the sign function

-1, ifx <O,
sgn: R — R, x —> {0, if x =0,
1, ifx >0,

is an obvious counterexample to the statement “any map R — R is continuous”.
However, a closer inspection reveals that the sign function cannot be proven to be a
total function R — R if only intuitionistic logic is available. The domain of the sign
function is the subset {x € R|x <0V x =0V x > 0} CR, and in intuitionistic
logic this subset cannot be shown to coincide with R.
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Sections 4.2, 4.3, and 4.4 present several examples for such anti-classical
statements and explain how to make sense of them. There are also toposes which
are closer to the standard topos and do not validate such anti-classical statements:

Definition 3 A topos & is boolean if and only if the laws of classical logic are true
in &.

Since exactly those statements hold in the standard topos which hold on the meta
level, the standard topos is boolean if and only if, as is commonly supposed, the
laws of classical logic hold on the meta level. Most toposes of interest are not
boolean, irrespective of one’s philosophical commitments about the meta level, and
conversely some toposes are boolean even if classical logic is not available on the
meta level.

Remark 1 The axiom of choice (which is strictly speaking not part of classical
logic, but of classical set theory) is also not available in most toposes. By
Diaconescu’s theorem, the axiom of choice implies the law of excluded middle in
presence of other axioms which are available in any topos.

At this point in the text, all prerequisites for exploring toposes have been
introduced. The reader who wishes to develop, by explicit examples, intuition for
working internally to toposes is invited to skip ahead to Sect. 4.2.

4.1.2 Relation to Models of Set Theory

In set theory, philosophy and logic, models of set theories are studied. These
are structures (M, €) validating the axioms of some set theory such as Zermelo—
Fraenkel set theory with choice ZFC, and they can be pictured as “universes in which
we can do mathematics” in much the same way as toposes.

In fact, to any model (M, €) of a set theory such as ZF or ZFC, there is a
topos Setys such that a statement holds in Sety, if and only if it holds in M A

Example 1 The topos Sety associated to the universe V of all sets (if this structure
is available in one’s chosen ontology) coincides with the standard topos Set.

In set theory, we use forcing and other techniques to construct new models of
set theory from given ones, thereby exploring the set-theoretic multiverse. There
are similar techniques available for constructing new toposes from given ones, and
some of these correspond to the techniques from set theory.

4 The topos Sety; can be described as follows: Its objects are the elements of M, that is the entities
which M believes to be sets, and its morphisms are those entities which M believes to be maps. The
topos Setys validates the axioms of the structural set theory ETCS, see McLarty (2004), Marquis
(2013), and Barton and Friedman (2019), and models are isomorphic if and only if their associated
toposes are equivalent as categories, see Mac Lane and Moerdijk (1992, Section VI.10).
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However, there are also important differences between the notion of mathemati-
cal universes as provided by toposes and as provided by models of set theory, both
regarding the subject matter and the reasons for why we are interested in them.

Firstly, toposes are more general than models of set theory. Every model of set
theory gives rise to a topos, but not every topos is induced in this way from a model
of set theory. Unlike models of ZFC, most toposes do not validate the law of excluded
middle, much less so the axiom of choice.

Secondly, there is a shift in emphasis. An important philosophical objective for
studying models of set theory is to explore which notions of sets are coherent:
Does the cardinality of the reals need to be the cardinal directly succeeding Ry,
the cardinality of the naturals? No, there are models of set theory in which the
continuum hypothesis fails. Do non-measurable sets of reals need to exist? No, in
models of ZF+AD, Zermelo—Fraenkel set theory plus the axiom of determinacy, it is
a theorem that every subset of R” is Lebesgue-measurable. Can the axiom of choice
be added to the axioms of ZF without causing inconsistency? Yes, if M is a model
of ZF then LM, the structure of the constructible sets of M, forms a model of ZEC.

Toposes can be used for similar such purposes, and indeed have been, especially
to explore the various intuitionistic notions of sets. However, an important aspect of
topos theory is that toposes are used to explore the standard mathematical universe:
truth in the effective topos tells us what is computable; truth in sheaf toposes tells us
what is true locally; toposes adapted to synthetic differential geometry can be used
to rigorously work with infinitesimals. All of these examples will be presented in
more detail in the next sections.

In a sense which can be made precise, toposes allow us to study the usual objects
of mathematics from a different point of view — one such view for every topos —
and it is a beautiful and intriguing fact that with the sole exception of the law of
excluded middle, the laws of logic apply to mathematical objects also when viewed
through the lens of a specific topos.

4.1.3 A Glimpse of the Toposophic Landscape

There is a proper class of toposes. Figure 4.1 depicts three toposes side by side: the
standard topos, a sheaf topos and the effective topos. Each of these toposes tells a
different story of mathematics, and any topos which is not the standard topos invites
us to ponder alternative ways how mathematics could unfold.

Some of the most prominent toposes are the following.

1. The trivial topos. In the trivial topos, any statement whatsoever is true. The trivial
topos is not interesting on its own, but its existence streamlines the theory and
it can be an interesting question whether a given topos coincides with the trivial
topos.

2. Set, the standard topos. A statement is true in Set iff it is true in the ordinary
mathematical sense.
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. Setyy, the topos associated to any model (M, €) of ZF.
. Set", the category of functors (W, <) — Set associated to any Kripke

model (W, <). A statement is true in this topos iff it is valid with respect to the
ordinary Kripke semantics of (W, <). This example shows that the Kripke—Joyal
semantics of toposes generalizes the more familiar Kripke semantics.

. Eff, the effective topos. A statement is true in Eff iff if it has a computable

witness as detailed in Sect. 4.2. In Eff, any function N — N is computable, any
function R — R is continuous and the countable axiom of choice holds (even if
it does not on the meta level).

. Sh(X), the fopos of sheaves over any space X. A statement is true in Sh(X) iff

it holds locally on X, as detailed in Sect. 4.3. For most choices of X, the axiom
of choice and the intermediate value theorem fail in Sh(X), and this failure is for
geometric reasons.

. Zar(A), the Zariski topos of a ring A presented in Sect. 4.4. This topos contains

a mirror image of A which is a field, even if A is not.

. Bohr(A), the Bohr topos associated to a noncommutative C*—algebra A. This

topos contains a mirror image of A which is commutative. In this sense,
quantum mechanical systems (which are described by noncommutative C*-
algebras) can be regarded as classical mechanical systems (which are described
by commutative algebras). Details are described by Butterfield et al. (1998)
and Heunen et al. (2009).

. Set[T], the classifying topos of a geometric theory T.> This topos contains the

generic T-model. For instance, the classifying topos of the theory of groups
contains the generic group. Arguably it is this group which we implicitly refer
to when we utter the phrase “Let G be a group.”’. The generic group has exactly
those properties which are shared by any group whatsoever.

T (Lo), the free topos. A statement is true in the free topos iff it is intuitionis-
tically provable. Lambek and Scott proposed that the free topos can reconcile
moderate platonism (because this topos has a certain universal property which
can be used to single it out among the plenitude of toposes), moderate formalism
(because it is constructed in a purely syntactic way) and moderate logicism
(because, as a topos, it supports an intuitionistic type theory). Details are
described by Lambek (1994) and Couture and Lambek (1991).

There are several constructions which produce new toposes from a given topos &.

A non-exhaustive list is the following.

5 A geometric theory is a theory in many-sorted first-order logic whose axioms can be put as
geometric sequents, sequents of the form ¢ -y ¢ where ¢ and v are geometric formulas (formulas
built from equality and specified relation symbols by the logical connectives T L AV 3 and by
arbitrary set-indexed disjunctions \/).

6 More precisely, this is only true for those properties which can be formulated as geometric
sequents. For arbitrary properties ¢, the statements “the generic group has property ¢” and “all
groups have property ¢” need not be equivalent. This imbalance has mathematical applications
and is explored in Blechschmidt (2020).
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1. Given an object X of &, the slice topos &/ X contains the generic element xg

of X. This generic element can be pictured as the element we implicitly refer to
when we utter the phrase “Let x be an element of X.”. A statement ¢ (x() about xg
is true in &/ X if and only if in & the statement Vx : X. ¢(x) is true.
For instance, the topos Set/Q contains the generic rational number x¢. Neither
the statement “xq is zero” nor the statement “xq is not zero” hold in Set/Q, as
it is neither the case that any rational number in Set is zero nor that any rational
number in Set is not zero. Like any rational number, the number x( can be written
as a fraction %. Just as xg itself, the numbers a and b are quite indetermined.

2. Given a statement ¢ (which may contain objects of & as parameters but which
must be formalizable as a geometric sequent), there is a largest subtopos of & in
which ¢ holds. This construction is useful if neither ¢ nor —¢ hold in & and we
want to force ¢ to be true. If & = —¢, then the resulting topos is the trivial topos.
(A subtopos is not simply a subcategory; rather, it is more like a certain kind of
quotient category. We do not give, and for the purposes of this contribution do
not need, further details.)

3. There is a “smallest dense” subtopos Sh——(&). This topos is always boolean,
even if & and the meta level are not. For a mathematician who employs intu-
itionistic logic on their meta level, the nonconstructive results of their classical
colleagues do not appear to make sense in Set, but they hold in Sh——(Set). If
classical logic holds on the meta level, then Set and Sh——(Set) coincide.

The topos Sh——(&) is related to the double negation translation from classical
logic into intuitionistic logic: A statement holds in Sh——(E) if and only if its
translation holds in E, see Blechschmidt (2017, Theorem 6.31).

Toposes are still mathematical structures, and as long as we study toposes within
the usual setup of mathematics, our toposes are all part of the standard topos.
This is why Fig.4.1 pictures the standard topos twice, once as a particular topos
next to others, and once as the universe covering the entirety of our mathematical
discourse.” The toposes which we can study in mathematics do not tell us all
possible stories how mathematics could unfold, only those which appear coherent
from the point of view of the standard topos, and the topos-theoretic multiverse
which we have access to is just a small part of an even larger landscape.®

7 There is a fine print to consider. Technically, if we work within ZF or its intuitionistic cousin 1ZF,
most toposes of interest are proper classes, not sets. In particular Set itself is a proper class. Hence
Fig. 4.1 should not be interpreted as indicating that toposes are contained in Set as objects, which
most are not. In this regard toposes are similar to class-sized inner models in set theory. We believe
that the vague statement “our toposes are all part of the standard topos” is still an apt description of
the situation. A possible formalization is (the trivial observation that) “our toposes are all indexed
categories over Set”.

8 This paragraph employs an overly narrow conception of “mathematics”, focusing only on those
mathematical worlds which form toposes and for instance excluding any predicative flavors of
mathematics (Laura Crosilla’s survey in Crosilla (2018) is an excellent introduction). Toposes are
impredicative in the sense that any object of a topos is required to have a powerobject. A predicative
cousin of toposes are the arithmetic universes introduced by Joyal which have recently been an
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To obtain just a hint of how the true landscape looks like, we can study topos
theory from the inside of toposes; the resulting picture can look quite different from
the picture which emerges from within the standard topos.

For instance, from within the standard topos, we can write down the construction
which yields the standard topos and the construction which yields the effective
topos Eff and observe that the resulting toposes are not at all equivalent: In Eff,
any function R — R is continuous while Set abounds with discontinuous functions
(at least if we assume a classical meta level). In contrast, if we carry out these
two constructions from within the effective topos, we obtain toposes which are
elementarily equivalent. More precisely, for any statement ¢ of higher order
arithmetic,

Eff = (Set =)  iff  Eff = (Eff = ).

In this sense the construction which yields the effective topos is idempotent (van
Oosten, 2008, Section 3.8.3).

Remark 2 The picture of a topos-theoretic multiverse is related to Hamkin’s
multiverse view in set theory as put forward in Hamkins (2012). In fact, the topos-
theoretic multiverse can be regarded as an extension of the set-theoretic multiverse:
While Hamkins proposes to embrace all models of set theory (not necessarily all of
them equally — we might prefer some models over others), we propose to embrace
all toposes (again not necessarily all of them equally). As every model M of set
theory gives rise to a topos Setyy, the set-theoretic multiverse is contained in the
topos-theoretic one.

However, a central and intriguing feature of the multiverse view in set theory has,
as of yet, no counterpart in topos theory: namely a systematic study of its modal
logic with respect to various notions of relations between toposes.

4.1.4 A Syntactic Account of Toposes

We introduced toposes from a semantic point of view. There is also a second, purely
syntactic point of view on toposes:

1. (semantic view) A topos is an alternate mathematical universe. Any topos
contains its own stock of mathematical objects. A “transfer theorem” relates
properties of those objects with properties of objects of the standard topos: A
statement ¢ about the objects of a topos & holds in & iff the statement “E = ¢”
holds in the standard topos.

important object of consideration by Maietti and Vickers, see Maietti (2010), Maietti and Vickers
(2012), and Vickers (2016).
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2. (syntactic view) A topos is merely an index to a syntactical translation procedure.
Any topos & gives rise to a “generalized modal operator” which turns a
statement ¢ (about ordinary mathematical objects) into the statement “& = ¢”
of the same kind (again about ordinary mathematical objects).

For instance, in the semantic view, the effective topos is an alternative universe
which contains its own version of the natural numbers. These naturals cannot be
directly compared with the naturals of the standard topos, for they live in distinct
universes, but by the transfer theorem they are still linked in a nontrivial way: For
instance, the statement “there are infinitely many primes in Eff” (a statement about
natural numbers in Eff) is equivalent to the statement “for any number n, there
effectively exists a prime number p > n” (a statement about natural numbers and
computability in the standard topos). (The meaning of effectivity will be recalled in
Sect.4.2.)

In the syntactic view, the effective topos merely provides a coherent way of
adding the qualification “effective” to mathematical statements, for instance turning
the statement “for any number n, there exists a prime number p > n” into “for
any number n, there effectively exists a prime number p > n”. Similarly, a sheaf
topos Sh(X) provides a coherent way for turning statements about real numbers and
real functions into statements about continuous X-indexed families of real numbers
and real functions.

The crucial point is that the translation scheme provided by any topos is sound
with respect to intuitionistic logic. Hence, regardless of our actual position on
toposes as alternate universes, working under the lens of a given topos feels like
working in an alternate universe.

4.2 The Effective Topos, a Universe Shaped
by Computability

A basic question in computability theory is: Which computational tasks are
solvable in principle by computer programs? For instance, there is an algorithm for
computing the greatest common divisor of any pair of natural numbers, and hence
we say “any pair of natural numbers effectively has a greatest common divisor” or
“the function N x N — N, (n, m) — gcd(n, m) is computable”.

In such questions of computability, practical issues such as resource constraints
or hardware malfunctions are ignored; we employ the theoretical notion of Turing
machines, a mathematical abstraction of the computers of the real world.

A basic observation in computability theory is that there are computational tasks
which are not solvable even for these idealized Turing machines. The premier
example is the halting problem: Given a Turing machine M, determine whether M
terminates (comes to a stop after having carried out finitely many computational
steps) or not.
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A Turing machine H which would solve this problem, that is read the description
of a Turing machine M as input and output one or zero depending on whether M
terminates or not, would be called a halting oracle, and a basic result is that there
are no halting oracles. If we fix some effective enumeration of all Turing machines,
then we can express the undecidability of the halting problem also by saying that
the halting function

1, if the n-th Turing machine terminates,
h:N— N, nr—

0, otherwise,

is not computable.

The effective topos Eff is a convenient home for computability theory. A
statement is true in Eff if and only if it has a computable witness. For instance,
a computable witness of a statement of the form “Vx. 3y. ¢(x, y)” is a Turing
machine which, when given an input x, computes an output y together with a
computable witness for ¢(x, y).

Section 4.2.1 presents several examples to convey an intuitive understanding of
truth in the effective topos; the precise translation rules are displayed in Table 4.1.
A precise definition of the effective topos requires notions of category theory which
we do not want to suppose here; it is included only for reference.

Introductory literature on the effective topos includes the references Hyland
(1982), van Oosten (2008), Phoa (1992), and Bauer (2005).

Definition 4

1. Anassembly is a set X together with a relation (IFx) € N x X such that for every
element x € X, there is a number n such that n IFx x.

2. A morphism of assemblies (X,|lFx) — (Y,IFy)isamap f : X — Y which is
tracked by a Turing machine, that is for which there exists a Turing machine M
such that for any element x € X and any number n such that n I x, the
computation M (n) terminates and M (n) I+ f(x).

A number n such that n IFx x is called a realizer for x and can be pictured
as a concrete representation of the abstract element x. The assembly of natural
numbers is the assembly (N, =y) and the assembly of functions N — N is the
assembly (X, IF) where X is the set of computable functions N — N and n IF f
if and only if the n-th Turing machine computes f. The category of assemblies is a
regular category, but it is missing effective quotients. The effective topos is obtained
by a suitable completion procedure:

Definition 5 The effective topos Eff is the ex/reg completion (as in Menni 2000,
Section 3.4) of the category of assemblies.
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4.2.1 Exploring the Effective Topos

Due to its computational nature, truth in the effective topos is quite different from
truth in the standard topos. This section explores the following examples:

Statement in Set in Eff

Any natural number is prime or not prime v (trivially) 4

There are infinitely many primes v v

Any function N — N is constantly zero or not v (trivially) X

Any function N — N is computable X v (trivially)
Any function R — R is continuous X v
Markov’s principle holds v (trivially) v

Heyting arithmetic is categorical X v

Example 2 (Any natural number is prime or not.) Even without knowing what a
prime number is, one can safely judge this statement to be true in the standard topos,
since it is just an instance of the law of excluded middle.

By the Kripke—Joyal semantics, stating that this statement is true in the effective
topos amounts to stating that there is a Turing machine which, when given a natural
number n as input, terminates with a correct judgment whether n is prime or not.
Such a Turing machine indeed exists — writing such a program is often a first
exercise in programming courses. Hence the statement is also true in the effective
topos, but for the nontrivial reason that primality can be algorithmically tested.

Example 3 (There are infinitely many primes.) A first-order formalization of this
statement is “for any natural number n, there is a prime number p which is greater
than n”, and is known to be true in the standard topos by any of the many proofs of
this fact.

Its external meaning when interpreted in the effective topos is that there exists a
Turing machine M which, when given a natural number # as input, terminates with
a prime number p > n as output. Such a Turing machine exists, hence the statement
is true in the effective topos.’

Example 4 (Any function N — N is constantly zero or not.) Precisely, the statement
is

VN ((VniNL f(n) = 0) v =(Vn:N. f(n) = 0)).

By the law of excluded middle, this statement is trivially true in the standard topos.

9 More precisely, the machine M should also output the description of a Turing machine which
witnesses that p is prime and that p > n. However, the statement “p is prime and p > n” is =—-
stable (even decidable), and for those statements witnesses are redundant.
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Its meaning when interpreted in the effective topos is that there exists a Turing
machine M which, when given the description of a Turing machine F which
computes a function f : N — N as input, terminates with a correct judgment
of whether f is the zero function or not. Such a machine M does not exist, hence
the statement is false in the effective topos.

Intuitively, the issue is the following. Turing machines are able to simulate other
Turing machines, hence M could simulate F' on various inputs to search the list of
function values f(0), f(1),... for a nonzero number. In case that after a certain
number of steps a nonzero function value is found, the machine M can correctly
output the judgment that f is not the zero function. But if the search only turned up
zero values, it cannot come to any verdict — it cannot rule out that a nonzero function
value will show up in the as yet unexplored part of the function.

A rigorous proof that such a machine M does not exist reduces its assumed
existence to the undecidability of the halting problem.

Remark 3 Quite surprisingly, there are infinite sets X for which any flavor of
constructive mathematics, in particular the kind which is valid in any topos, verifies
the omniscience principle

V:BY (@x:X. f(x) =0) v (Yx: X, f(x) = 1)),

where B = {0, 1} is the set of booleans. This is not the case for X = N, but it is for
instance the case for the one-point compactification X = N, of the naturals. This
phenomenon has been thoroughly explored by Escardé (2013).

Example 5 (Any function N — N is computable.) The preceding examples give the
impression that what is true in the effective topos is solely a subset of what is true
in the standard topos. The example of this subsection, the so-called formal Church—
Turing thesis, shows that the relation between the two toposes is more nuanced.

As recalled above, in the standard topos there are functions N — N which are
not computable by a Turing machine. Cardinality arguments even show that most
functions N — N are not computable: There are Ngo = 2% functions N — N, but
only 8¢ Turing machines and hence only 8¢ functions which are computable by a
Turing machine.

In contrast, in the effective topos, any function N — N is computable by a Turing
machine. The external meaning of this internal statement is that there exists a Turing
machine M which, when given a description of a Turing machine F computing a
function f : N — N, outputs a description of a Turing machine computing f. It is
trivial to program such a machine M: the machine M simply has to echo its input
back to the user.

To avert a paradox, we should point out where the usual proof of the existence of
noncomputable functions theory employs nonconstructive reasoning, for if the proof
would only use intuitionistic reasoning, it would also hold internally to the effective
topos, in contradiction to the fact that in the effective topos all functions N — N are
computable.



78 1. Blechschmidt

The usual proof sets up the halting function 4 : N — N, defined using the case
distinction

1, if the n-th Turing machine terminates,
h:nm—

0, if the n-th Turing machine does not terminate,

and proceeds to show that / is not computable. However, in the effective topos, this
definition does not give rise to a total function from N to N. The actual domain is the
subset M of those natural numbers n for which the n-th Turing machine terminates
or does not terminate. This condition is trivial only assuming the law of excluded
middle; intuitionistically, this condition is nontrivial and cuts out a nontrivial subset
of N.

Subobjects in the effective topos are more than mere subsets; to give an element
of M in the effective topos, we need not only give a natural number n such that the n-
th Turing machine terminates or does not terminate, but also supply a computational
witness of either case. For any particular numeral nop € N, there is such a witness
(appealing to the law of excluded middle on the meta level), and hence the statement
“nog € M” holds in the effective topos. However, there is no program which could
compute such witnesses for any number n, hence the statement “Vn:N. n € M” is
not true in Eff and hence the effective topos does not believe M and N to be the
same.

Example 6 (Any function R — R is continuous.) In the standard topos, this
statement is plainly false, with the sign and Heaviside step functions being
prominent counterexamples. In the effective topos, this statement is true and
independently due to Kreisel et al. (1959) and Ceitin (1962). A rigorous proof is
not entirely straightforward (a textbook reference is Longley and Normann 2015,
Theorem 9.2.1), but an intuitive explanation is as follows.

What the effective topos believes to be a real number is, from the external point
of view, a Turing machine X which outputs, when called with a natural number n
as input, a rational approximation X (n). These approximations are required to be
consistent in the sense that |X(n) — X(m)| < 27" + 27" Intuitively, such a
machine X denotes the real number lim,,_, o, X (1), and each approximation X (n)
must be within 27" of the limit.

A function f : R — R in the effective topos is therefore given by a Turing
machine M which, when given the description of such a Turing machine X as input,
outputs the description of a similar such Turing machine Y. To compute a rational
approximation Y (n), the machine ¥ may simulate X and can therefore determine
arbitrarily many rational approximations X (m). However, within a finite amount of
time, the machine Y can only learn finitely many such approximations. Hence a
function such as the sign function, for which even rough rational approximations
of sgn(x) require infinite precision in the input x, does not exist in the effective
topos.
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Example 7 (Markov’s principle holds.) Markov’s principle is the following state-
ment:

VN ((==3n:N. f(n) =0) = In:N. f(n) = 0). (MP)

It is an instance of the law of double negation elimination and hence trivially true
in the standard topos, at least if we subscribe to classical logic on the meta level.
A useful consequence of Markov’s principle is that Turing machines which do not
run forever (that is, which do not not terminate) actually terminate; this follows
by applying Markov’s principle to the function f : N — N where f(n) is zero
or one depending on whether a given Turing machine has terminated within n
computational steps or not.

The effective topos inherits Markov’s principle from the meta level: The
statement “Eff = (MP)” means that there is a Turing machine M which, when
given the description of a Turing machine F' computing a function f : N — N as
input, outputs the description of a Turing machine Sr which, when given a witness
of “=—=3n:N. f(n) = 07, outputs a witness of “In:N. f(n) = 0” (up to trivial
conversions, this is a number n such that f(n) = 0).

By the translation rules listed in Table 4.1, a number e realizes “——3n:N.
f(n) = 07 if and only if it is not not the case that there is some number ¢’ such

Table 4.1 A (fragment of) the translation rules defining the meaning of statements internal to the
effective topos

Eff = o iff there is a natural number e such that e I- ¢.

A number e such that e IF ¢ is called a realizer for ¢. It is the precise version of what is
called computational witness in the main text. In the following, we write “e - n |” to mean
that the e-th Turing machine terminates on input n, and in this case denote the result by “e-n”.
No separate clause for negation is listed, as “—¢” is an abbreviation for “(¢ = 1)”.

elFs=t iff s =1¢.

el T iff 1 =1.

elF L iff 1 =0.

elF(pnAy) iffe-0)ande-1 | ande-0lFg@ande-1IF .
elF(pVvy) iffe-0)ande-1 | and

ife-0=0thene-1 I ¢,and
ife-0#0thene-1IF .
el- (=) iff for any number r € N such thatr |- ¢, e-r | ande - r IF .
elF (Yn:N. ¢(n)) iff for any number ng € N, e - ng | and e - ng I+ ¢ (no).
elF (@n:N. p(n)) iffe-0)ande-1 | ande- 11 ¢(e-0).
el- (vf :NY. o(f)) iff for any function fy : N — N and any number ro such that
fo is computed by the ro-th Turing machine,
e-rg Jande-ry - @o(fo).
el @f:NY. o(f))iffe-0 ) ande- 1 | and the (e - 0)-th Turing machine
computes a function fy : N — Nande - 1 IF ¢(fo).
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that ¢’ realizes “In:N. f(n) = 0”. Hence, if “dn:N. f(n) = 0” is realized at all,
then any number is a witness of “—=—3n:N. f(n) = 0.

As a consequence, the input given to the machine Sr is entirely uninformative
and Sy cannot make direct computational use of it. But its existence ensures that
an unbounded search will not fail (and hence succeed, by an appeal to Markov’s
principle on the meta level): The machine Sr can simulate F to compute the
values f(0), f(1), f(2),...1in turn, and stop with output n as soon as it determines
that some function value f(n) is zero.

Example 8 (Heyting arithmetic is categorical.) In addition to the standard model N,
the standard topos contains uncountably many nonstandard models of Peano
arithmetic (at least if we assume a classical meta level). By a theorem of van den
Berg and van Oosten (2011), the situation is quite different in the effective topos:

1. Heyting arithmetic, the intuitionistic cousin of Peano arithmetic, is categorical in
the sense that it has exactly one model up to isomorphism, namely N.

2. In fact, even the finitely axiomatizable subsystem of Heyting arithmetic where
the induction scheme is restricted to Xj-formulas has exactly one model up
to isomorphism, again N. As a consequence, Heyting arithmetic is finitely
axiomatizable.

3. Peano arithmetic is “quasi-inconsistent” in that it does not have any models, for
any model of Peano arithmetic would also be a model of Heyting arithmetic, but
the only model of Heyting arithmetic is N and N does not validate the theorem
“any Turing machine terminates or does not terminate” of Peano arithmetic.

As a consequence, Godel’s completeness theorem fails in the effective topos: In
the effective topos, Peano arithmetic is consistent (because it is equiconsistent to
Heyting arithmetic, which has a model) but does not have a model.

Statement (1) is reminiscent of the fact due to Tennenbaum (1959) that no
nonstandard model of Peano arithmetic in the standard topos is computable.

4.2.2 Variants of the Effective Topos

The effective topos belongs to a wider class of realizability toposes. These can
be obtained by repeating the construction of the effective topos with any other
reasonable model of computation in place of Turing machines. The resulting toposes
will in general not be equivalent and reflect higher-order properties of the employed
models. Two of these further toposes are of special philosophical interest.

Hypercomputation Firstly, in place of ordinary Turing machines, one can employ
the infinite-time Turing machines pioneered by Hamkins and Lewis (2000). These
machines model hypercomputation in that they can run for “longer than infinity”;
more precisely, their computational steps are indexed by the ordinal numbers instead
of the natural numbers. For instance, an infinite-time Turing machine can trivially
decide the twin prime conjecture, by simply walking along the natural number line
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and recording any twin primes it finds. Then, on day w, it can observe whether it
has found infinitely many twins or not.

In the realizability topos constructed using infinite-time Turing machines, the
full law of excluded middle still fails, but some instances which are wrong in the
effective topos do hold in this topos. For example, the instance “any function N —
N is the zero function or not” does: Its external meaning is that there is an infinite-
time Turing machine M which, when given the description of an infinite-time Turing
machine F computing a function f : N — N as input, terminates (at some ordinal
time step) with a correct judgment of whether f is the zero function or not. Such
a machine M indeed exists: It simply has to simulate F on all inputs O, 1, ... and
check whether one of the resulting function values is not zero. This search will
require a transfinite amount of time (not least because simulating F on just one
input might require a transfinite amount of time), but infinite-time Turing machines
are capable of carrying out this procedure.

The realizability topos given by infinite-time Turing machines provides an
intriguing environment challenging many mathematical intuitions shaped by clas-
sical logic. For instance, while from the point of view of this topos the reals are
still uncountable in the sense that there is no surjection N — R, there is an
injection R — N (Bauer, 2015, Section 4).]0

Machines of the physical world A second variant of the effective topos is obtained
by using machines of the physical world instead of abstract Turing machines. In
doing so, we of course leave the realm of mathematics, as real-world machines
are not objects of mathematical study. But it is still interesting to see which

10 What the realizability topos given by infinite-time Turing machines believes to be a real number
is, from the external point of view, an infinite-time Turing machine X which outputs, when called
with a natural number n as input, a rational approximation X (n). As with the original effective
topos, these approximations have to be consistent in the sense that | X (n) — X (m)| < 27" 4+ 27",
and two such machines X, X’ represent the same real iff | X (n) — X'(m)| < 27" 4+ 27" for all
natural numbers n, m.

A map R — N in this topos is hence given by an infinite-time Turing machine M which, when
given the description of such an infinite-time Turing machine X as input, outputs a certain natural
number M (X). If X and X’ represent the same real, then M (X) has to coincide with M (X’). This
map R — N is injective iff conversely M (X) = M (X’) implies that X and X’ represent the same
real.

We can program such a machine M as follows: Read the description of an infinite-time Turing
machine X representing a real number as input. Then simulate, in a dovetailing fashion, all infinite-
time Turing machines and compare their outputs with the outputs of X. As soon as a machine X’
is found which happens to terminate on all inputs in such a way that | X (n) — X'(m)| < 27" 427"
for all natural numbers n, m, output the number of this machine (in the chosen enumeration of all
infinite-time Turing machines) and halt.

The number M (X) computed by M depends on the input/output behaviour of X, the chosen
ordering of infinite-time Turing machines, and on details of the interleaving simulation and the
comparison procedure — but it does not depend on the implementation of X or on its specific
choice of rational approximations X (n). The search terminates since there is at least one infinite-
time Turing machine which represents the same real number as X does, namely X itself.
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commitments about the nature of the physical world imply which internal statements
of the resulting topos.

For instance, Bauer (2012) showed that inside this topos any function R — R
is continuous if, in the physical world, only finitely many computational steps
can be carried out in finite time and if it is possible to form tamper-free private
communication channels.

4.3 Toposes of Sheaves, a Convenient Home for Local Truth

Associated to any topological space X (such as Euclidean space), there is the topos
of sheaves over X, Sh(X). To a first approximation, a statement is true in Sh(X) if
and only if it “holds locally on X”’; what Sh(X) believes to be a set is a “continuous
family of sets, one set for each point of X”. The precise rules of the Kripke—Joyal
semantics of Sh(X) are listed in Table 4.2.

Just as the effective topos provides a coherent setting for studying computability
using a naive element-based language, the sheaf topos Sh(X) provides a coherent
setting for studying continuous X-indexed families of objects (sets, numbers,
functions) as if they were single objects.

Sheaf toposes take up a special place in the history of topos theory: If the
base X is allowed to be a site instead of a topological space, the resulting toposes
constitute the large class of Grothendieck toposes, the original notion of toposes.
Categorically, the passage from topological spaces to sites is rather small, but the

Table 4.2 A (fragment of) the translation rules defining the meaning of statements internal
to Sh(X), the topos of sheaves over a topological space X

Sh(X) E=¢ iff X = o.

UkEa=b iffa=>bonU.

UET is true for any open U'.

UELl iff U is the empty open.

UkE(@Ay) iff U EpandU = .

UE(@Vvy) iff there is an open covering U = |J; U; such that,

for each index i, U; =g or U; = .
UE(@@=1vY) iff forany open V C U, V = ¢ implies V = .
U = (Va:R. ¢(a)) iff for any open V C U and

any continuous functionag : V — R, V = ¢(ap).
U = (3a:R. ¢(a)) iff there is an open covering U = | J; U; such that,

for each index i, there exists a

continuous function ag : U; — R with U; = ¢(agp).
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resulting increase in flexibility is substantial and fundamental to modern algebraic
geometry.

4.3.1 A Geometric Interpretation of Double Negation

In intuitionistic logic, the double negation ——¢ of a statement ¢ is a slight
weakening of ¢; while (¢ = ——) is an intuitionistic tautology, the converse can
only be shown for some specific statements. The internal language of Sh(X) gives
geometric meaning to this logical peculiarity.

Namely, it is an instructive exercise that Sh(X) | ——¢ is equivalent to the
existence of a dense open U of X suchthat U |= ¢. If Sh(X) E ¢, thatis if X = ¢,
then there obviously exists such a dense open, namely X itself; however the converse
usually fails.

The only case that the law of excluded middle does hold internally to Sh(X)
is when the only dense open of X is X itself; assuming classical logic in the
metatheory, this holds if and only if every open is also closed. This is essentially
only satisfied if X is discrete.

An important special case is when X is the one-point space. In this case Sh(X) is
equivalent (as categories and hence toposes) to the standard topos. To the extent
that mathematics within Sh(X) can be described as “mathematics over X, this
observation justifies the slogan that “ordinary mathematics is mathematics over the
point”.

4.3.2 Reifying Continuous Families of Real Numbers as Single
Real Numbers

As detailed in Example 6, what the effective topos believes to be a real number is
actually a Turing machine computing arbitrarily-good consistent rational approx-
imations. A similarly drastic shift in meaning, though in an orthogonal direction,
occurs with Sh(X). What Sh(X) believes to be a (Dedekind) real number a is
actually a continuous family of real numbers on X, that is, a continuous function a :
X — R (Johnstone, 2002, Corollary D4.7.5).

Such a function is everywhere positive on X if and only if, from the internal
point of view of Sh(X), the number a is positive; it is everywhere zero if and only
if, internally, the number a is zero; and it is everywhere negative if and only if,
internally, the number a is negative.

The law of trichotomy, stating that any real number is either negative, zero
or positive, generally fails in Sh(X). By the Kripke—Joyal semantics, the external
meaning of the internal statement “Va : R.a < Ova = 0Vva > 07 is that for
any continuous function a : U — R defined on any open U of X, there is an open
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Fig. 4.2 Three examples of what the topos Sh(X) believes to be a single real number, where
the base space X is the unit interval. (a) A positive real number. (b) A negative real number.
(¢) A number which is neither negative nor zero nor positive. Externally speaking, there is no
covering of the unit interval by opens on which the depicted function a is either everywhere
negative, everywhere zero or everywhere positive

covering U = |J; U; such that on each member U; of this covering, the function a
is either everywhere negative on U;, everywhere zero on U; or everywhere positive
on U;. But this statement is, for most base spaces X, false. Figure 4.2c shows a

counterexample.
The weaker statement “for any real number a it is not not the case that a <
Oora = 0ora > 0” does hold in Sh(X), for this statement is a theorem of

intuitionistic calculus. Its meaning is that there exists a dense open U such that U
can be covered by opens on which a is either everywhere negative, everywhere zero
or everywhere positive. In the example given in Fig. 4.2¢, this open U could be taken
as X with the unique zero of a removed.

4.3.3 Reifying Continuous Families of Real Functions
as Single Real Functions

Let (fi)xex be a continuous family of continuous real-valued functions; that is, not
only should each of the individual functions f; : R — R be continuous, but the
jointmap R x X — R, (a, x) — fx(a) should also be continuous. (This stronger
condition implies continuity of the individual functions.) From the point of view
of Sh(X), this family looks like a single continuous function f : R — R.

The internal statement “f(—1) < 0” means that f,(—1) < 0 for all x € X,
and similarly so for being positive. More generally, if a and b are continuous
functions X — R (hence real numbers from the internal point of view), the internal
statement “ f (@) < b” means that f,(a(x)) < b(x) for all x € X.

The internal statement “f possesses a zero”, that is “there exists a number a
such that f(a) = 0, means that all the functions f, each possess a zero and that
moreover, these zeros can locally be picked in a continuous fashion. More precisely,
this statement means that there is an open covering X = (J; U; such that, for each
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Fig. 4.3 Three members f,, fx,, fx, of a continuous family ( f,)ex of continuous functions f :
R — R. The parameter space is X = [0, 1] (not shown). The functions f, are obtained by moving
the horizontal plateau up or down. The leftmost depicted member fy, has a unique zero, and there
is an open neighborhood U of xp on which zeros of the functions f,, x € U can be picked
continuously. The same is true for x; (right figure). However, there is no such neighborhood of that
particular parameter value x| for which the horizontal plateau lies on the x-axis (middle figure)

index i, there is a continuous function a : U; — R such that f,(a(x)) = 0 for
all x € U;. (On overlaps U; N U, the zero-picking functions a need not agree.)

Example 9 From these observations we can deduce that the intermediate value
theorem of undergraduate calculus does in general not hold in Sh(X) and hence
does not allow for an intuitionistic proof. The intermediate value theorem states:
“If f : R — R is a continuous function such that f(—1) < 0 and f(1) > O, there
exists a number a such that f(a) = 0.” The external meaning of this statement
is that for any continuous family ( fy), of continuous functions with fy(—1) < 0
and f,(1) > O for all x € X, it is locally possible to pick zeros of the family in a
continuous fashion. Figure 4.3 shows a counterexample to this claim.

In contrast, the intermediate value theorem for (strictly) monotone functions does
have an intuitionistic proof and hence applies in the internal universe of Sh(X). Thus
for any continuous family (fy), of continuous monotone functions with fy(—1) <
O and f,(1) > Ofor all x € X, it is locally possible to pick zeros of the family in a
continuous fashion.!!

Example 10 The fundamental theorem of algebra generally fails in Sh(X), even for
quadratic polynomials. What Sh(X) believes to be a (Dedekind) complex number
is externally a continuous function X — C. Let X be the complex plane. Then
the identity function idy is a single complex number from the internal point of
view of Sh(X). The fundamental theorem of algebra would predict “Sh(X) =
Ja : C. a®> —idy = 07, hence that there is an open covering X = \U; Ui such that on
each open Uj, there is a continuous function a : U; — C such that a(z)2 —z=0

"' While the Kripke-Joyal translation of “3” is by definition local existence, one can show that
the Kripke—Joyal translation of “3!” is unique existence on all opens, in particular unique global
existence. Because the conclusion of the intermediate value theorem for monotone functions can
be strengthened from “has a zero” to “has a unique zero”, this observation shows that the zeros can
even globally be picked in a continuous fashion.
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for all z € U;. However, it is a basic fact of complex analysis that such a function
does not exist if 0 € U;.

Example 11 The standard proof of Banach’s fixed point theorem employs only
intuitionistic reasoning, hence applies internally to Sh(X). Interpreting the internal
Banach fixed point theorem by the Kripke—Joyal translation rules yields the state-
ment that fixed points of continuous families of contractions depend continuously
on parameters.

4.4 Toposes Adapted to Synthetic Differential Geometry

The idea of infinitesimal numbers — numbers which can be pictured as lying
between —% and % for any natural number n (though this intuition will not serve
as their formal definition in this text) — has a long and rich history. They are not part
of today’s standard setup of the reals, but they are still intriguing as a calculational
tool and as a device to bring mathematical intuition and mathematical formalism
closer together.

For instance, employing numbers ¢ such that > = 0, we can compute derivatives
blithely as follows, without requiring the notion of limits:

(x+8)?—x>=x>+2xe + &% — x> =2x¢

(*)
(x—i—s)3 —x3 =3 432+ 3xe? + 3 — 13

= 3x%e

In each case, the derivative is visible as the coefficient of ¢ in the result. A further
example is from geometry: Having a nontrivial set A of infinitesimal numbers
available allows us to define a tangent vector to a manifold M to be a map y :
A — M. This definition precisely captures the intuition that a tangent vector is an
infinitesimal curve.

4.4.1 Hpyperreal Numbers

There are several ways of introducing infinitesimals into rigorous mathematics. One
is Robinson’s nonstandard analysis, where we enlarge the field R of real numbers
to a field *R of hyperreal numbers by means of a non-principal ultrafilter.

The hyperreals contain an isomorphic copy of the ordinary reals as the so-called
standard elements, and they also contain infinitesimal numbers and their inverses,
transfinite numbers. Additionally, they support a powerful transfer principle: Any
statement which does not refer to standardness is true for the hyperreals if and only
if it is true for the ordinary reals.
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In the “if” direction, the transfer principle is useful for importing knowledge
about the ordinary reals into the hyperreal realm. For instance, addition of hyperreals
is commutative because addition of reals is. By the “only if” direction, a theorem
established for the hyperreals also holds for the ordinary reals. In this way, the
infinitesimal numbers of nonstandard analysis can be viewed as a convenient fiction,
generating a conservative extension of the usual setup of mathematics.

There is a growing body of research in mathematics which employs hyperreal
numbers in this sense. To exemplarily cite just one example, a recent application
of nonstandard analysis in symplectic geometry is due to Fabert (2015a,b), who
verified an infinite-dimensional analogue of the Arnold conjecture.

However, the realization of the fiction of infinitesimal numbers in nonstandard
analysis crucially rests on a non-principal ultrafilter, whose existence requires
principles which go beyond the means of Zermelo—Fraenkel set theory ZF.'?> Non-
principal ultrafilters cannot be described in explicit terms, and they are also not at
all canonical structures: ZFC proves that there are 22% many, see PospiSil (1937).

A practical consequence of this nonconstructivity is that it can be hard to unwind
proofs which employ hyperreal numbers to direct proofs, and even where possible
there is no general procedure for doing so. For instance, Fabert has not obtained a
direct proof of his result, and not for the lack of trying (personal communication).

4.4.2 Topos-Theoretic Alternatives to the Hyperreal Numbers

Topos theory provides several constructive alternatives for realizing infinitesimals.
One such is “cheap nonstandard analysis” by Tao (2012). It is to Robinson’s
nonstandard analysis what potential infinity is to actual infinity: Instead of appealing
to the axiom of choice to obtain a completed ultrafilter, cheap nonstandard analysis
constructs larger and larger approximations to an ideal ultrafilter on the go.

The following section presents a (variant of a) topos used in synthetic differential
geometry as discussed by Kock (2006, 2020). This subject is a further topos-
theoretic approach to infinitesimals which is suited to illustrate the philosophy of
toposes as lenses. A major motivation for the development of synthetic differential

12 A hyperreal number is represented by an infinite sequence (xg, X1, X2, . . .) of ordinary real num-
bers. For instance, the sequence (1, 1, 1, ...) represents the hyperreal version of the number 1, the
sequence (1, %, %, ...) represents an infinitesimal number and its inverse (1, 2, 3, ...) represents
a transfinite number. The sequence (1, 1,1, ...) is deemed positive, and so is (—1, 1,1, 1,...),
which differs from the former only in finitely many places. But should (1,—1,1,—1,...)
be deemed positive or negative? Whatever the answer, our decision has consequences
for other sequences. For instance (—1,1,—1,1,...) should be assigned the opposite sign
and (tan(1), tan(—1), tan(1), tan(—1), ...) the same. A non-principal ultrafilter is a set-theoretic
gadget which fixes all such decisions once and for all in a coherent manner. Having such an
ultrafilter available, a sequence (xo, x1, x2, ...) is deemed positive if and only if the set {i €
N|x; > 0} is part of the ultrafilter.
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geometry was to devise a rigorous context in which the writings of Sophus Lie, who
freely employed infinitesimals in his seminal works, can be effortlessly interpreted,
staying close to the original and requiring no coding.

4.4.3 The Zariski Topos

The starting point is the observation that while the field R of ordinary real numbers
does not contain infinitesimals (except for zero), the ring R[]/ (€2) of dual numbers
does. This ring has the cartesian product R x R as its underlying set and the ring
operations are defined such that g2 = 0, where ¢ 1= (0, 1):

(a,b) + (', by :=(a+d,b+b) (a,b) - {d',b) := (ad',ab' + a'b)

We write (a, b) more clearly as a + be.

The flavor of infinitesimal numbers supported by R[e]/(g2) are the nilsquare
numbers, numbers which square to zero. The numbers be with b € R are nilsquare
in R[e]/(2), and they are sufficient to rigorously reproduce derivative computations
of polynomials such as ().

However, the dual numbers are severely lacking in other aspects. Firstly, they do
not contain any nilcube numbers which are not already nilsquare. These are required
in order to extend calculations like (x) to second derivatives, as in

1
x + 8)3 —x3=3x%+ 56)&92.

Secondly, the dual numbers contain, up to scaling, only a single infinitesimal
number. Further independent infinitesimals are required in order to deal with
functions of several variables, as in

fx+ey+e)— fx,y) =Dy f(x,y)e+ Dyf(x,y)e.

Thirdly, and perhaps most importantly, the ring of dual numbers fails to be a field.
The only invertible dual numbers are the numbers of the form a+be with a invertible
in the reals; it is not true that any nonzero dual number is invertible.

The first deficiency could be fixed by passing from R[e]/ (82) to R[e] /(83)
(a ring whose elements are triples and whose ring operations are defined
such that (0,1,0)> = 0) and the second by passing from Rle]/(e?)
to R[e, £']/(e%, %, e€’). In a sense, both of these proposed replacements are better
stages than the basic ring R[£]/(g%) or even R itself. However, similar criticisms
can be mounted against any of these better stages, and the problem that all these
substitutes are not fields persists.

Introducing the topos The Zariski topos of R, Zar(R), meets all of these chal-
lenges. It contains a ring R™, the so-called ring of smooth numbers, which reifies
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Table 4.3 A (fragment of) the Kripke—Joyal translation rules of the Zariski topos Zar(R)

Zar(R) = ¢ iff R = ¢.

AEs=t iff s = t as elements of A.

AET iff 1 =1in A.

AEL iff 1 =0in A.

AE(@AY) iff AEgpand A = .

AE (VYY) iff there exists a partition 1 = f] 4+ --- + f, € A such that,
for each index i, A[f; '] = g or ALf, '] = .

AE(p=>1vY) iff for any finitely presented A-algebra B,

B = ¢ implies B = .

A = (Vx :R™. ¢(x)) iff for any finitely presented A-algebra B and
any element xo € B, B = ¢(xp).

A = (3x :R™. p(x)) iff there exists a partition 1 = f} +--- + f,, € A such that,
for each index i, there is an element xo € A[ fi_l]

such that A[fl-_l] E o (xo0)-

A covering of an R-algebra A is a finite family of A-algebras of the form (A[f;~ Diz 1,
suchthatl = f1 +---+ f, € A.

the real numbers, the dual numbers, the two proposed better stages and indeed
any finitely presented R-algebra into a single coherent entity. The Kripke—Joyal
translations rules of Zar(R) are listed in Table 4.3. Any evaluation of an internal
statement starts out with the most basic stage of all, the ordinary reals R; then,
during the course of evaluation, the current stage is successively refined to better
stages (further finitely presented R-algebras).

For instance, universal quantification “Vx : R™” not only refers to all elements of
the current stage, but also to any elements of any refinement of the current stage.
Similarly, negation “—¢” does not only mean that ¢ would imply L in the current
stage, but also that it does so at any later stage.

For reference purposes only, we include the precise definition of the Zariski
topos.

Definition 6 The Zariski topos of R, Zar(R), is a certain full subcategory of the
category of functors from finitely presented R-algebras to sets, namely of the Zariski
sheaves. Such a functor is a Zariski sheaf if and only if, for any covering (A[ ]‘fl]) i
of any finitely presented R-algebra A (this notion is defined in Table 4.3), the
diagram

FA) - [[F@ALs " D= Fa@id o'

Jj-k

is an equalizer diagram. The object R™ of Zar(R) is the tautologous functor A — A.
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Properties of the smooth numbers As a concrete example, the Kripke—Joyal
translation of the statement that R™ is a field,

Zar(R) EVx:R™. (=(x =0) = Iy:R™. xy = 1),

is this:

For any stage A and any element x € A,
for any later stage B of A,
if for any later stage C of B
in which x = 0 holds
also 1 = 0 holds,
then B can be covered by later stages C; such that,
for each index i, there is an element y € C; withxy = 1 in C;.

And indeed, this statement is true. Let a stage A (a finitely presented R-algebra) and
an element x € A be given. Let B be any later stage of A (any finitely presented A-
algebra — such an algebra is also finitely presented as an R-algebra). Assume that for
any later stage C of B in which x = 0 holds also 1 = 0 holds. Trivially, x = 0 holds
in the particular refinement C := B/(x). Hence 1 = 0 holds in C. By elementary
algebra, this means that x is invertible in B. Hence the conclusion holds for the
singleton covering of B given by C; := B.

Remark 4 The Zariski topos can also be set up with an arbitrary commutative ring S
in place of R. The resulting topos Zar(S) contains a mirror image S~ of S, a
reification of all finitely presented S-algebras into a single entity. The computation
we just carried out also applies in this more general context and shows that S~ is a
field. It is in this sense that the topos Zar(S) provides a lens through which S looks
like a field.

A small variant of this lens has been used to give a new proof of Grothendieck’s
generic freeness lemma, a fundamental theorem in algebraic geometry about the
free locus of certain sheaves. The new proof uses the lens to reduce to the case of
fields, where the claim is trivial (Blechschmidt, 2017, Section 11.5), and improves
in length on all previously known proofs, even if the topos machinery is eliminated
by unrolling the appropriate definitions as in Blechschmidt (2018).!3

13 This contribution is not the proper place for an exposition of Grothendieck’s generic freeness
lemma, but some aspects can already be appreciated on a syntactical level. Grothendieck’s generic
freeness lemma states that any finitely generated sheaf of modules on a reduced scheme is finite
locally free on a dense open. By employing the internal language, this statement is reduced to the
following fact of intuitionistic linear algebra: Any finitely generated module over a field is not not
finite free.
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Within Zar(R), we can construct the set A := {e¢:R~ |2 = 0} of nilsquare
numbers. Then R™ validates the following laws:

1. Law of cancellation: Vx :R™. Vy:R™. ((Vs A xe=ye) = x = y)
2. Axiom of micro-affinity: V f : (R™)A. Fa:R™. Ve: A. fe) = f(0)+ae

The unique number a in the axiom of micro-affinity deserves to be called “f’(0)”;
this is how we synthetically define the derivative in synthetic differential geometry.
(However, despite these properties the Zariski topos is not yet well-adapted to
synthetic differential geometry in the sense of Definition 7 below.)

Having motivated the Zariski topos by the desire to devise a universe with
infinitesimals, the actual ontological status of the infinitesimal numbers in the
Zariski topos is more nuanced. The law of cancellation implies that, within Zar(R),
it is not the case that zero is the only nilsquare number. However, this does not
mean that there actually is a nilsquare number in R™". In fact, any nilsquare number
cannot be nonzero, as nonzero numbers are invertible while nilsquare numbers are
not. Hence any nilsquare number in R™ is not not zero. This state of affairs is only
possible in an intuitionistic context.

Remark 5 The ring R™ of smooth numbers does not coincide with the Cauchy
reals, the Dedekind reals or indeed any well-known construction of the reals
within Zar(R). This observation explains why R™ can satisfy the law of cancellation
even though it is an intuitionistic theorem that the only nilsquare number in any
flavor of the reals is zero.

4.4.4 Well-Adapted Models

The Zariski topos of R allows to compute with infinitesimals in a satisfying manner.
However it is not suited as a home for synthetic differential geometry, a first
indication being that in Zar(R), any function R~ — R"™ is a polynomial function.
Hence important functions such as the exponential function do not exist in Zar(R).
More comprehensively, the Zariski topos is not a well-adapted model in the sense
of the following definition.

Definition 7 A well-adapted model of synthetic differential geometry is a topos &
together with a ring R™ in & such that:

1. The ring R™ is a field.

2. The ring R™ validates the axiom of micro-affinity and several related axioms.

3. There is a fully faithful functor i : Mnf — & embedding the category of smooth
manifolds into &.

4. The ring R~ coincides with i (R!), the image of the real line in &.
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It is the culmination of a long line of research by several authors that several
well-adapted models of synthetic differential geometry exist, see Moerdijk and
Reyes (1991). By the conditions imposed in Definition 7, for any such topos &
the following transfer principle holds: If f,g : R — R are smooth functions,
then f’ = g (in the ordinary sense of the derivative) if and only if i(f) = i(g)
in & (in the synthetic sense of the derivative).

Hence the nilsquare infinitesimal numbers of synthetic differential geometry may
freely be employed as a convenient fiction when computing derivatives. Because the
theorem on the existence of well-adapted models has a constructive proof, any proof
making use of these infinitesimals may mechanically be unwound to a (longer and
more complex) proof which only refers to the ordinary reals.

4.4.5 On the Importance of Language

The verification of the field property of R™ in Sect. 4.4.3 on page 90 demonstrates
a basic feature of the Kripke—Joyal translation rules: The translation “&E = ¢” of a
statement ¢ is usually quite complex, even if ¢ is reasonably transparent.

The language of toposes derives its usefulness for mathematical practice from
this complexity reduction: In some cases, the easiest way to prove a result (about
objects of the standard topos) is

1. to observe that the claim is equivalent to the Kripke—Joyal translation of a
different (typically more transparent) claim about objects of some problem-
specific relevant topos and then

2. to verify this different claim, reasoning internally to the topos.

One can always mechanically eliminate the topos machinery from such a proof,
by translating all intermediate statements following the Kripke—Joyal translation
rules and unwinding the constructive soundness proof of Theorem 1. This unwind-
ing typically turns transparent internal proofs into complex external proofs — proofs
which one might not have found without the problem-adapted internal language
provided by a custom-tailored topos.
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Chapter 5 ®
Rescuing Implicit Definition from Qs
Abstractionism

Daniel Waxman

Abstract Neo-Fregeans in the philosophy of mathematics hold that the key to
a correct understanding of mathematics is the implicit definition of mathematical
terms. In this paper, I discuss and advocate the rejection of abstractionism, the
putative constraint (latent within the recent neo-Fregean tradition) according to
which all acceptable implicit definitions take the form of abstraction principles. I
argue that there is reason to think that neo-Fregean aims would be better served by
construing the axioms of mathematical theories themselves as implicit definitions,
and consider and respond to several lines of objection to this thought.

Keywords Abstractionism - Neo-Fregeanism - Logicism - Hume’s Principle

5.1 Introduction

Neo-Fregeans in the philosophy of mathematics hold that the key to a correct
understanding of mathematics is the implicit definition of mathematical terms.!
Such implicit definitions, they believe, play two roles. First, they play the semantic
role of introducing terms which—according to a battery of background semantic
and metaphysical views—successfully refer to mathematical objects. Second, they
play the epistemic role of allowing for a priori justification or knowledge of at least
basic propositions concerning the objects whose reference has been secured, and
thereby (via plausibly a priori logical resources) allow for justification or knowledge
of a substantial range of non-basic propositions too. If neo-Fregeans are right,

I Many have contributed to the neo-Fregean programme in one way or another. See Wright (1983)
for the locus classicus, Hale and Wright (2000) for their conception of implicit definition and the
role it plays, and the essays in Hale and Wright (2001).
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implicit definition holds out the prospect of providing a fully satisfying solution
to the famous challenge raised by Benacerraf (1973), who saw the philosophy of
mathematics pulled in mutually incompatible directions by the desire, on the one
hand, to give mathematical sentences a face value reading and the need, on the
other, to explain how a tractable epistemology of mathematical belief is possible.

Consider arithmetic, around which much of the discussion has revolved. Accord-
ing to neo-Fregeans, arithmetic is grounded (in a sense to be explained) in the
stipulation of what has come to be known as Hume’s Principle:

(HP) VFVYG (#F = #G < F ~ G)

where ~ abbreviates the claim that there is a bijection between F' and G (which can
be defined in second-order logic).

The idea is that HP is to be viewed as an implicit definition of the cardinality
operator “the number of...”, denoted by #. Much neo-Fregean effort has been
expended on developing a general account of implicit definition intended to
vindicate the claim that, in the best cases—of which HP is supposed to be a
representative example—implicit definitions can perform a great deal of valuable
philosophical work. Here are some of the main benefits that have been claimed
for HP, with directly analogous virtues carrying over to the other ‘good cases’ of
implicit definition:

1. HP, when understood as an implicit definition, bestows a clear sense on the
(previously undefined) “number of” operator “#’. This definition serves to
thereby introduce a range of complex singular terms of the form “#®”, read as
“the number of ®s”.

2. Granted the success of HP as an implicit definition (and the truth of relevant
instances of its right-hand-side), singular terms of the newly introduced form
“#®” are guaranteed to refer. There is no further possibility of reference failure,
that somehow there is no object to which “#®” refers, above and beyond the
possibility of failure of the implicit definition itself.

3. HP is supposed to introduce a concept of a distinctive sortal kind—cardinal
number—under which the referents of singular terms of the newly introduced
form fall, and it is supposed to explain this newly introduced sortal kind.
The explanation of the sortal kind succeeds, in particular, in introducing a
new category of objects in such a way that explains why cross-categorical
identifications (e.g. the claim that Julius Caesar is identical with the number 2)
are unproblematically false.

4. Finally, HP is supposed to realize certain considerable epistemic benefits. Most
important, it promises to sustain what Hale and Wright call the “traditional
connection” between implicit definitions and a priori knowledge: as they put it,
“to know both that a meaning is indeed determined by an implicit definition, and
what meaning it is, ought to suffice for a priori knowledge of the proposition
thereby expressed.”” If this is right, HP is available as an item of a priori

2 Hale and Wright (2000, 296).
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knowledge: it can be known, with no or at least minimal collateral epistemic
work, simply via competent stipulation. It is well-known that HP, against a
background of second-order logic, interprets second-order Peano Arithmetic. So
perhaps second-order arithmetic in its entirety can come to be known a priori as
well.3

Clearly, then, the benefits of implicit definitions—if the philosophical work in
defending theses (1)—(4) can be pulled off—are vast. But although these benefits
attach, allegedly, to implicit definitions in general, neo-Fregean attention has
concentrated—I think it’s fair to say exclusively—on implicit definitions of the
following form:

VoV (§a =8B < a =~ )

where § is a term-forming operator, o« and f are expressions of a certain type,
and ~ denotes an equivalence relation holding between entities of the relevant
type. Call principles of that form abstraction principles. This paper will discuss,
and ultimately advocate the rejection of, the view I will henceforth call abstrac-
tionism: that, in the good cases, abstraction principles enjoy certain metaphysical,
semantic, and epistemic benefits not shared by putative implicit definitions of
other forms. Building on a suggestion by John MacFarlane, my aim will be to
motivate and explore the—in my view, considerable—attractions of a position that
combines the neo-Fregean friendliness towards implicit definition with a broader
non-abstractionism.* In particular, I will advocate a so-called Hilbertian Strategy,
according to which the axioms of mathematical theories themselves constitute
implicit definitions of the distinctive vocabulary used in their statement.

I will defend two main theses. The first is a Parity Thesis: if the benefits claimed
for implicit definition by the neo-Fregeans are genuinely available for the taking,
those benefits are equally available to proponents of the Hilbertian Strategy. My
second thesis is that the Hilbertian Strategy in fact has significant advantages over
the traditional approach. Unlike abstractionism, it generalizes seamlessly to the
whole of mathematics. Furthermore, it opens up a plausible response to the Bad
Company objection that has notoriously plagued the neo-Fregean program.

In a sense, the project can be viewed as an attempt to (perhaps subversively)
appropriate the resources of implicit definition that have been defended so ardently
and so arduously by the neo-Fregeans, and place them in the service of what
might be called a neo-Hilbertian view.> Perhaps 1 should say “re-appropriate”, for
it is an irony of history that the self-described proponents of a distinctively neo-
Fregean approach to the philosophy of mathematics are the chief contemporary

3 The transition from “a theory within which the axioms of PA can be interpreted” to “arithmetic”
should not go unnoticed, as Heck (2000) has emphasized, but neo-Fregeans plausibly hold that this
transition is warranted.

4 MacFarlane (2009). See Sect. 5.2 for more on MacFarlane’s contribution.
3 This term is aptly used by Hale and Wright (2009a) as a description of a view they oppose.
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defenders of implicit definition as a means of gaining mathematical knowledge,
given the antipathy that Frege himself manifested towards the notion both in his
correspondence with Hilbert and in his post-Grundlagen writings.

The plan is as follows. In Sect.5.2, I briefly recap the constraints that Hale
and Wright place on legitimate implicit definitions, and present (largely following
MacFarlane 2009) a prima facie case that the Hilbertian Strategy satisfies each of
them. In Sect.5.3, I outline what I take to be the major advantages of such an
approach, both in comparison to the orthdox neo-Fregean project and in its own
right. I then turn in Sect.5.4 to defend the view against a series of objections,
the most serious of which are raised by Hale and Wright. These objections come
in three varieties: semantic, epistemic, and concerns regarding the applicability
of mathematics. I conclude that neo-Hilbertianism should, at the very least, be
considered a serious rival to abstractionism.

5.2 Implicit Definition and the Hilbertian Strategy

5.2.1 Implicit Definition

The conception of implicit definition we’ll consider is one elaborated by Hale and
Wright in their essay Implicit Definition and the A Priori, although it was arguably
latent in many earlier neo-Fregean writings. Hale and Wright (2000, 286) state the
central idea as follows:

we may fix the meaning of an expression by imposing some form of constraint on the use
of longer expressions—typically, whole sentences—containing it.

More specifically [288]:

We take some sentence containing—in the simplest case—just one hitherto unexplained
expression. We stipulate that this sentence is to count as true. The effect is somehow to
bring it about that the unexplained expression acquires a meaning of such a kind that a true
thought is indeed expressed by the sentence—a thought which we understand and moreover
know to be true, without incurring any further epistemological responsibility, just in virtue
of the stipulation.

So implicit definition works by taking a sentence or sentences containing novel
vocabulary to be stipulatively true. In the best cases, the idea runs, this will bestow
the novel vocabulary with a meaning that serves to vindicate the stipulation. To
return to the example of arithmetic, HP contains the novel operator “#” which is
supposed to receive its meaning from the stipulation that, for all F and G, #F = #G
whenever F' and G can be put into one-one correspondence.

Although it is beyond the scope of this paper to defend the merits of implicit
definition in detail, it is worth saying something about the general theoretical

6 For the correspondence, see Frege (1982).
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orientation from which it arises. The view may seem alien to those who conceive
of expressions having a meaning by somehow “latching on” to meaning-entities
independently existing in some Fregean third realm. In contrast, the doctrine is seen
naturally as arising from the combination of two commitments: (i) a generally use-
based metasemantic account of how sentential semantic properties (in particular,
truth) are fixed; and (ii) the explanatory priority of syntactic over semantic sub-
sentential properties (“syntactic priority”).”

In extremely compressed detail: the putatively mysterious idea of our “stipulating
the truth” of a certain sentence is best understood as, roughly, commitment to
employing that sentence in certain patterns of usage. The thought is that, against
the background of a use-based metasemantic account, this will be possible to do in
a way that ensures that such sentences are true. (It is helpful to compare the way
in which inferentialists about logical connectives explain the semantic content of
logical vocabulary). Syntactic priority is a complex package of views: in particular,
it endorses three crucial moves: (i) from an expression’s exhibiting the typical
syntactic/inferential behaviour of a singular term to its being a genuine singular
term; (ii) from an expression’s being a genuine singular term figuring in a true
sentence to its being a genuinely referring singular term; and (iii) from the fact
that a singular term refers, to there being an object (as opposed to something of a
different ontological category, e.g. a Fregean concept) to which it refers.®

Naturally, we can only hope to scratch the surface of issues concerning metase-
mantics, implicit definition, the syntactic priority thesis, and the connection between
implicit definition and a priori justification here. My goal is not to defend the neo-
Fregean cluster of views, but rather to argue for the conditional: if something in
the ballpark of Hale and Wright’s account of implicit definition is correct—i.e. in
the best cases, implicit definitions can both (i) ensure that previously unmeaningful
vocabulary can receive a meaning by appropriately figuring in sentences that
are stipulated to be true, and (ii) provide a means for us to know the definitive
sentence—then we have no reason to believe that the class of successful implicit
definitions is restricted to abstraction principles.

What does “in the best cases” mean? Hale and Wright (2000) give five criteria
they take to be individually necessary (and, tentatively, jointly sufficient) for an
implicit definition to succeed:

Consistency The sentence serving as the vehicle of the definition must be consis-
tent.

Conservativeness The sentence serving as the vehicle of the definition must be
conservative over the base theory. Roughly, the extended theory ought not introduce
new commitments concerning the ontology of the base theory.

7 Much more on these views can be found in Hale and Wright (2001). See also Hale and Wright
(2009b) on neo-Fregean metaontology and MacBride (2003) for a helpful overview of the semantic
and metasemantic commitments of neo-Fregeanism.

8 For an account of singular terms, see Hale’s Chapters 1 and 2 of Hale and Wright (2001).
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Less roughly, say that a theory T, is a conservative extension of Ty if for any
sentence ¢ in the language of Ty, if T + Ty F ¢ then T;  ¢. Conservativeness
is too strong of a condition to place on implicit definitions, at least if neo-Fregean
proposals are to have a chance of getting off the ground. The reason is that Hume’s
Principle has consequences, e.g. that there are infinitely many objects, that may
be expressible in the base language and yet not follow from the base theory. To
get around this issue, neo-Fregeans have moved to what has become known as
Field-conservativeness, which intuitively says that the extended theory has no new
consequences for the objects spoken of by the base theory.® To express this formally,
we need some notation. Let P(x) be a predicate that doesn’t occur in Ty or T,
(intended to pick out all and only the “old” objects spoken of by T;). For each
sentence ¢ in the language of T, let ¢* be the result of relativizing all quantifiers
occurring in ¢ to P (x) and let T} be the theory whose axioms are the sentences *,
where v is an axiom of T .10

This allows the relevant notion of conservativeness to be defined: T, is a Field-
conservative extension of T if, for any sentence ¢ in the language of Ty, if T{+T> -
¢*,then T - ¢.

The proposal, then, is that implicit definitions must be Field-conservative over
the theory to which they are added.

Harmony In Wright and Hale’s discussion, Harmony is a constraint that applies
primarily to implicit definitions of logical expressions (in particular, expressions
with both an “introduction rule” and an “elimination rule”), intended to rule out
unharmonious connectives like Pryor’s “tonk™ and its dual. It is unclear that this
constraint has any bearing on the mathematical cases we are concerned with here,
so I will pass over it without further comment.'!

Generality This condition holds that the meaning that new terms receive from
implicit definitions must satisfy Gareth Evans (1982)’s Generality Constraint: very
roughly, if new sub-sentential expressions are introduced by a definition, one who
grasps the definition must thereby be provided with the means of understanding
the meaning of arbitrary sentences composed of (grammatically appropriate) com-
bination of the new expression and antecedently understood vocabulary. This is
obviously connected with the Caesar problem: if, as neo-Fregeans contend, HP
construed as an implicit definition is able to provide singular terms such as #F
with a meaning, then the Generality Constraint requires (as a special case) that

9 See Field (2016, 11) for this notion of conservativeness, and Hale and Wright (2001, 297) for the
thought that it is the relevant notion in stating this constraint on implicit definition.

101 assume that the axioms of theories are sentences rather than open formulae.

11'See for instance Tennant (1978) and Dummett (1991b) for discussions of Harmony in the
logical setting. More recently, Wright (2016) suggests that Hume’s Principle is best understood
as functioning more like a rule of inference than an axiom. A full discussion of Harmony in the
context of non-logical rules, however, would take us too far afield.
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it also provide us with a means of understanding mixed identity sentences like
#F = Julius Caesar.

Anti-arrogance By contrast with the previous—logical and semantic—conditions,
Anti-arrogance is an epistemic constraint. Hale and Wright put it as follows. An
implicit definition is arrogant if:

the truth of the vehicle of the stipulation is hostage to the obtaining of conditions of which

it’s reasonable to demand an independent assurance, so that the stipulation cannot justifiably
be made in a spirit of confidence, “for free”

Here is a proposal to make this more precise. Say that a sentence (understood as the
vehicle of an implicit definition) S is arrogant if (i) there is some condition C that
must be satisfied for the truth of S; (ii) we require justification that C is satisfied in
order to have justification in S; and (iii) we have no justification that C is satisfied.'?

There are two points worth noting. One is that condition (ii) is somewhat
schematic: to flesh it out, we need to know which conditions require antecedent
justification. This involves deep questions in epistemology, which cannot fully be
discussed here. But there are different possible views here, ranging from the very
conservative (we must have justification that all conditions necessary for the truth of
the stipulation are satisfied) to the very liberal (we do not need justification that any
are). Hale and Wright are not very explicit about where on this spectrum they lie,
but their discussion seems to situate them towards the more conservative end. I will
follow them in this respect. Dialectically, this is appropriate: the more conservative
the approach, the fewer legitimate implicit definitions there will be, so proceeding
this way does not give the Hilbertian unfair advantage.'®> The second point to note
is that, due to condition (iii), whether an implicit definition is arrogant in the above
sense will be sensitive to one’s epistemic position. In other words, it is possible for
a stipulation to be arrogant in the hands of one epistemic agent, and not in the hands
of another, depending on which conditions they have justification to accept. This
will prove later to be of significance.'*

12 For the sake of clarity, I understand justification in the propositional sense: roughly, what it
would be appropriate for someone in one’s epistemic position to believe, whether or not one in fact
has the belief in question. I mean to be as neutral as possible here, and in particular not to exclude
varieties of entitlement, i.e. “default” or “non-earned” forms of justification. See Wright (2016),
and Hale and Wright (2001, 127) for evidence that this is how they understand our justification in
the preconditions for the stipulation of HP.

13 Ebert and Shapiro (2009), Section 6, discuss some of the options one might adopt here, and
argue that neither (what I have called) the very conservative nor the very liberal approaches are
very attractive. However, their discussion of the conservative approach seems to me to be marred
by a conflation of the knowability or justifiability of consistency with its provability, which they
rightly take to be ruled out for Godelian reasons. I discuss this, and the epistemology of consistency
more generally, in other papers.

14 Anti-arrogance ought to be distinguished from other conditions that might be confused with
it. One is conditionality; it is not equivalent to saying that implicit definitions have a conditional
as their main connective. (To see that it is not sufficient, consider any arrogant stipulation A and
consider T — A, where T is some logical truth. To see that it is not necessary, take Hume’s
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At this stage, it is time to introduce the proposed alternative to the neo-Fregean
strategy and to evaluate it against these criteria.

5.2.2 The Hilbertian Strategy

Return again to the case of arithmetic. Neo-Fregean abstractionists want to explain
our understanding of arithmetic basically as follows: we begin by stipulating
Hume’s Principle as a definition of “the number of...”, and then we use (second-
order) logical resources to derive certain theorems, including, most importantly,
the axioms of PA. This result is now known as Frege’s theorem, and is surely
one of Frege’s most substantial mathematical achievements.'> According to neo-
Fregeans, Frege’s Theorem provides a means of recovering the PA axioms and
thereby the whole of arithmetic in an epistemically responsible way, since, they
claim, (i) Hume’s Principle is something that we can come to know a priori, and
(ii) knowledge can be transmitted via competently carried-out second-order logical
deductions.'®

But why the need to go via HP? What, exactly, is mandatory about taking the
neo-Fregean route to the Peano Axioms, as opposed to the following procedure? Lay
down the (conjunction of) the Peano Axioms as a stipulation, intended to implicitly
define the expression S—denoting the successor function—the numerical singular
terms—oO0, 1, 2, etc—and a predicate IN applying to all and only natural numbers.
Instead of using HP to implicitly define the notion of natural number and to serve
as the premise for a derivation of the PA axioms, the proposal is that the axioms
themselves are understood as the definitive principles introducing that notion. This is
what I will call the Hilbertian Strategy applied to arithmetic. More generally, it takes
the axioms of some target theory as themselves serving as an implicit definition of
the central notions involved.

It should be simple to see how the Hilbertian Strategy can, in principle, be
extended to any other axiomatizable mathematical theory. To take just a few salient
examples, the axiomatic theory of the real numbers (axiomatized e.g. as a complete
ordered field), the complex numbers (axiomatized as e.g. the algebraic closure of
the reals, or as a field of characteristic 0 with transcendence degree ¢ over Q), set

Principle itself). Anti-arrogance is also importantly distinct from Conservativeness. Consider
Goldbach’s conjecture which (let us suppose) is a truth of arithmetic for which we lack a proof and,
consequently, justification. Now consider the stipulation of the theory: PA + Goldbach’s conjecture.
This is, ex hypothesi, a conservative extension, for Goldbach’s conjecture follows from PA. But it
is nevertheless arrogant, for we plausibly need independent assurance that Goldbach’s conjecture
is true before we can have any justification that the theory is true, i.e. that there are entities that
simultaneously satisfy PA and Goldbach’s conjecture.

15 For details of the modern rediscovery of Frege’s Theorem and the contributions (in various parts)
of Geach, Parsons, Tennant, Wright, Boolos, and Heck, see Burgess (2005, Ch 3).

16 In doing so they presumably appeal to a plausible epistemic closure principle.



5 Rescuing Implicit Definition from Abstractionism 105

theory (in any of its usual axiomatizations, e.g. ZFC, NBG, etc). In general there is
a version of the Hilbertian Strategy available for any axiomatic theory: one merely
takes the axioms themselves as an implicit definition of the predicates, relations, and
constants involved in the axiomatization.!”

Orthodox neo-Fregeans will no doubt be filled with the conviction that whatever
the apparent attractions of the Hilbertian Strategy, they are the result of theft over
honest toil. But they must face the question, first raised by John MacFarlane:
what strictures on implicit definition would this procedure violate, in the case of
arithmetic in particular and for other mathematical theories more generally? Let us
take the conditions in turn.'® I will attempt to make a prima facie case that the two
approaches are, at the very least, on a par. Later, in Sect. 5.4, I will consider and
reply to various subtle arguments to the effect that, despite first appearances, neo-
Fregeans are in a better position than Hilbertians to show that the relevant criteria
are satisfied.

Consistency If HP is consistent, then so is PA. This is because PA is relatively
interpretably within HP. On minimal epistemic assumptions this implies that we
have at least as much reason for believing that PA is consistent as we do for believing
that HP is consistent. So if the consistency constraint is satisfied by the neo-Fregean
stipulation, it is satisfied by the Hilbertian stipulation.

Conservativeness The justification here is similar to that of consistency. If PA has
any non-conservative implications over the base theory to which it is added, then so
does HP, in virtue of the relative interpretability of PA within HP.

Harmony As mentioned, Harmony is irrelevant outside of the context of logical
connectives.

Generality Prima facie, a stipulation of PA appears to be no better or worse off
in regard to its ability to satisfy the Generality Constraint than does a stipulation
of HP. It is true that a stipulation of PA does not, at least prima facie, fix
the meaning or truth-conditions of certain grammatically appropriate sentences
involving the newly introduced terms, such as “2 = Julius Caesar” or “IN(Caesar)”
or “S(Caesar) = (Augustus)”. This is just to say that the Hilbertian faces a version
of the Julius Caesar problem. However, the Caesar problem is notoriously pressing
for abstractionists too — indeed, it was precisely Frege’s own reason for rejecting

171f the theory is finitely axiomatized, the definition can be given as a single conjunctive sentence.
If it is schematically axiomatized, there are different options available: to use a truth predicate
of some kind; to appeal to a device of infinite conjunction or some other kind of higher order
resources; or to take the instances of the schema as collectively constituting the definition.

18 Of course, this point is merely ad hominem against Hale and Wright in the absence of arguments
that HP and PA do satisty the requirements. I take it that the discussion to come addresses at least
some worries about generality and arrogance; I discuss issues of consistency and conservativeness
further in other work. The points in the remainder of this section largely follow MacFarlane
(2009), who first pointed out that something like the Hilbertian Strategy appears to satisfy Hale
and Wright’s criteria.
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(what in this context can only anachronistically be called) the neo-Fregean strategy
for grounding arithmetic in HP. So, again prima facie, the two approaches are on a
par. Naturally, neo-Fregeans have said much in response to the Caesar problem. As
I will argue in Sect. 5.4, many of the resources to which they appeal can be equally
well appropriated by the Hilbertian.

Anti-arrogance Again prima facie, a stipulation of PA appears to have equally—
or less—demanding conditions for its truth than a stipulation of HP. Any model
of HP can be expanded to a model of PA. For instance, given classical logic,
both theories entail the existence of infinitely many objects, so both exclude finite
domains. Consequently, it is difficult to see how PA might be more arrogant than
HP. Certainly, one might not be justified in, e.g., believing that the universe co-
operates in providing enough or the right kind of entities to allow the stipulations to
be true. But if so, this is a reason to convict both implicit definitions of arrogance,
not just PA. In Sect. 5.4, I consider and respond to some further subtle arguments
from neo-Fregeans to the effect that the Hilbertian strategy is arrogant in a way that
their own approach is not.

The point of the foregoing is that there is a strong prima facie case for the con-
ditional claim: if the neo-Fregean Strategy with respect to arithmetic is successful,
then so too is the acceptability of the Hilbertian Strategy. In fact, as we have seen, the
Hilbertian Strategy appears if anything to be in a better position. Furthermore, since
nothing particular to arithmetic was appealed to in these arguments, the reasoning
above can be replicated in the general case: wherever the theory generated by an
acceptable abstraction principle allows for interpretation of an axiomatic theory that
we find of mathematical interest—that is just to say, whenever the neo-Fregean
Strategy for explaining some portion of established mathematics is successful—
then so too is the analogous instance of the Hilbertian Strategy. As I will now argue,
the Hilbertian Strategy is not merely on a par with the neo-Fregean strategy: in fact,
it has certain definite advantages.

5.3 Advantages of the Hilbertian Strategy

5.3.1 Abstractionism and Set Theory

A major thorn in the side of abstractionist neo-Fregeans has been an inability to
develop a satisfactory theory of sets. As is well known, Frege’s original approach,
employing Basic Law V:

(BLYV) VFVG ({x:Fx}={x:Gx} < (Vx(Fx < Gx)))

as the central abstraction principle governing the identity of sets, is inconsistent.
The problem is simply this: no subsequent development of set theory has delivered
a theory that can be plausibly considered foundational in the manner of ZFC, the
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most popular and widely used set theory. The best-known approach, due to George
Boolos, appeals to so-called New V:

(New V) VEVG ({x : Fx} = {x : Gx} < ((Bad(F))A(Bad(G))V (¥x (Fx <>
Gx))))

where Bad(F) expresses the condition that F is “large”, i.e. can be placed into
bijection with the entire universe. The idea is to avoid paradox by encoding
a class/set distinction into the implicit definition of the notion of set: set-sized
concepts—those that are not equinumerous with the universe—form sets, while
class-sized concepts do not. As Boolos showed, New V is consistent and able to
obtain (with suitable definitions) many of the axioms of ZFC, including Extension-
ality, Empty-Set, Well-Foundedness, Pairing, Union, Separation, and Replacement.
However, there is a clear sense in which this theory—call it Boolos Set Theory
(BST)—Ilacks the ontological power of ZFC. To see this, note that BST is satisfied
by the hereditarily finite sets: it follows that in it, the Axioms of Infinity and
Powerset both fail, since neither hold in the hereditarily finite sets.!” Given that
the ontological power of ZFC is generated primarily by these two axioms, the
resulting theory will be seen as admitting a severely impoverished ontology from
the perspective of a believer in the universe of sets as standardly conceived. I do not
know of any more promising abstractionist approaches to set theory.??

Of course, there are two reactions one might have to the seeming inability of
abstractionism to recover a theory that is recognizably comparable to contemporary
set theory in its scope and power. One can think, as Wright (2007, 174) tentatively
advances, that if “it turns out that any epistemologically and technically well-
founded abstractionist set theory falls way short of the ontological plenitude we
have become accustomed to require, we should conclude that nothing in the nature
of sets, as determined by their fundamental grounds of identity and distinctness,
nor any uncontroversial features of other domains on which sets may be formed,
underwrites a belief in the reality of that rich plenitude.” But this is a radical
conclusion indeed. Whatever one thinks of set theory, it is impossible to deny its
importance as a foundational theory within contemporary mathematics, in effect

19 The hereditarily finite sets are the sets with finite transitive closures: elements of V, for some
finite «, where this is the «th level of the von Neumann Universe.

20 As Burgess (2004) has shown, by adding a reflection principle (and plural logical resources) to
BST, all of the ZFC axioms are (remarkably) once again obtainable. It nevertheless ought to be
clear that a theory formulated in this way will fail to satisfy abstractionist strictures, since to the
best of my knowledge there is no way to straightforwardly write it as an abstraction principle. There
is additionally a further problem that New V entails a global choice principle, and this may violate
the conservativity requirement for implicit definitions (even the relevant and relatively weaker
notion of Field-conservativeness as introduced above). See Shapiro and Weir (1999) for details.
Fine (2002) has also worked extensively on the limits of abstraction principles; the theories he
obtains, the nth order “general theory of abstraction” (for finite n), are in general, equi-interpretable
with n + 1st order arithmetic. This is certainly enough to carry out much mathematics, but it is
nevertheless a far cry from an adequate replacement for orthodox set theory. See Burgess (2005)
for more on the limitations of Finean arithmetical theories.
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providing the predominant ontological background and organizational framework
within which mathematics is carried out. The fact that it cannot easily be seen
obviously to follow from any abstraction principle governing the identity of sets
is arguably more of a reason for rejecting that demanding constraint than it is for
rejecting set theory itself.?!

By contrast, compare how easily the proponent of the Hilbertian Strategy is able
to respond to the challenge posed by contemporary set theory. It is unsurprisingly
straightforward: merely take one’s favourite set theory (say, ZFC, perhaps with
some large cardinal axioms if one is feeling adventurous) and understand its axioms
as implicitly defining the notions of set and membership. To be sure, for this
to be a successful implicit definition of set and membership, ZFC must (like all
putative implicit definitions) satisfy the previously mentioned conditions in order
to succeed: ZFC must be consistent, conservative, not require any objectionably
arrogant epistemic preconditions to be satisfied, etc. I do not wish to trivialize the
question of whether these conditions hold. In my view, the question of whether our
best theories, ZFC included, are consistent (and in particular how we manage to
obtain justification to believe they are) is one of the most pressing and neglected
in the philosophy of mathematics. But this is not the place to discuss the issue
further; for our purposes it’s enough to note that, naturally, any neo-Fregean
abstraction principle purporting to recover set theory would necessarily face the
same challenges.

In short: the neo-Fregean’s prospects for recovering a theory capable of playing
the foundational role of set theory is questionable, and there is reason to be
optimistic about the Hilbertian’s prospects for doing the same.

5.3.2 How to Rid Oneself of Bad Company

Another major issue for neo-Fregeans is what has come to be known as the Bad
Company Objection. There are a great number of possible abstraction principles
that one might be tempted to adopt; but—and here is the rub—some of these
principles lead to unacceptable results. The most obvious kind of unacceptability is
exemplified by Basic Law V, which is inconsistent. But there are other, less obvious

21 In conversation, Crispin Wright has raised the interesting idea that an abstractionist treatment of
set theory might have the benefit of providing a principled distinction between features of set theory
that are (my word, not his) “intrinsic”, flowing from the nature of sets—i.e. those that follow from
the abstraction principle (whatever it may be) governing sets—and those that are “extrinsic”. (For
instance, if we go with Boolos Set Theory, Powerset and Infinity will count as extrinsic axioms
in this sense.) While this is intriguing, I think (if it is to recapture a theory with anything like
the strength of ZFC), it will end up raising more epistemological difficulties than it solves. In
particular, the question of the justification of any extrinsic axioms will become urgent in the face
of something like Benacerraf’s original dilemma: and, of course, on an abstractionist view, the
resources of implicit definition will be unavailable to play any epistemic role here.
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kinds of unacceptability also. For instance, there are pairs of abstraction principles
that are individually consistent (and conservative) which nevertheless, when taken
together, result in inconsistency.?? So the problem is essentially this: given that not
all consistent and conservative abstraction principles are acceptable, some account
needs to be provided of which principles are acceptable. The problem generalizes
in the obvious way to implicit definitions in general (of which abstraction principles
are particular examples). How might this problem be resolved?

Neo-Fregeans face a difficult technical challenge here: to investigate the logical
and mathematical features of abstraction principles and hope that some criteria can
be found to distinguish, in a principled way, between good and bad cases.

I don’t pretend to be in a position to offer anything like this kind of solution.
Nevertheless, I do want to argue that there’s a good sense in which the Hilbertian
Strategy allows us to sidestep these worries by showing how implicit definitions can
be combined, as long as the theories in question are consistent, to yield in effect the
whole of contemporary mathematics. Here’s a rough idea of what I have in mind.
The Appendix contains a proof of the following result:

Let T,, (for “mathematical”) and T, (for “background”) be theories whose
languages share no individual constants. As before, let T}, be the theory that results
from relativizing the quantifiers of T,, to a fresh predicate, and let T} be the theory
that results from relativizing the quantifiers of T to a fresh (and different) predicate.

Theorem 1 If T,, and T, are consistent first-order theories, then Ty + Ty, is
consistent and T}, is Field-conservative over Tp,.

The restriction to first-order theories is important: unfortunately, the result does not
hold for second-order theories.”> However, a slightly weaker result can be shown
for second-order theories. First a definition:

Definition (Field*-conservativeness.) T, is a Field*-conservative extension of Ty
if, for any sentence ¢ in the language of Ty, if T’f +Tr E¢* then T F ¢.

where F is understood as full semantic consequence.”*

Then we have:

Theorem 2 If T, and T), are satisfiable second-order theories, then T}, + T, is
satisfiable and T}, is Field*-conservative over Tp.

22 For more on Bad Company, see e.g. Wright (1999), Shapiro and Weir (1999), a special issue of
Synthese edited by Linnebo (2009), and several papers in Cook (2016).

23 Proof sketch: let T, be PA; + Con PA, and let T,, be PA; + —Conpa,, formulated in a disjoint
language (i.e. with different arithmetical constants and predicate-symbols). Then each theory is
individually consistent; but Tj, + Ty, is inconsistent, since it violates Internal Categoricity in the
sense of Button and Walsh (2018, Chapter 10).

24 See Shapiro (1991) for a definition.
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Take Theorem 1 first. I'd like to gloss this result as saying that, if you start with
a consistent base theory, and add to that theory an arbitrarily chosen consistent
mathematical theory then—after the theories are cleaned up in what I take to be
a wholly philosophically defensible way—the resulting theory is going to be (i)
consistent and (ii) Field-conservative over the base theory. The philosophical upshot
is, I claim, that the Hilbertian Strategy can provide an operational solution to the
Bad Company objection: the result shows that if we add a new mathematical theory
obtained via the Hilbertian Strategy, then (as long as the theory we attempt to add
is consistent, which as we have seen is a condition on its success as an implicit
definition in the first place), the end result will be itself consistent and conservative
over the base theory to which it is added. What is more, this is a strategy that can be
extended indefinitely: as long as the new theory we add at each stage is consistent,
then there is never any risk of ending up in inconsistency or with objectionably
non-conservative consequences.”> There is no prospect (as there is with abstraction
principles in general) of falling into inconsistency by way of adding individually
consistent principles/theories.

Three brief clarifications are in order. First, a word on the “cleaning up” of the
theories. All I really mean by this is that before the theories are added together, the
quantifiers of each are relativized to a predicate that is intended to pick out all and
only the entities spoken of by the theory. Suppose we have a base theory that does
not make any claims whatsoever about sets—a physical theory, say—and suppose
we want implicitly to define a notion of set via the Hilbertian Strategy. The idea
is that we introduce new predicates “set” and “non-set” and relativize all of the
quantifiers of the relevant theories to those predicates. That way, we will not be
saddled with set-theoretic claims like

VxVy(x =y < Vz(z€x < z€Y))

that have the (absurd) consequence of identifying all, e.g., physical objects that are
non-sets. For in its relativized form

VxVy (Set(x) A Set(y) > (x =y < Vz(Sz = (z € x © 2 €y))))

the principle will be explicitly restricted only to sets. This move seems philosoph-
ically well-motivated for reasons independent of anything to do with the present
project: theories, presumably, should always be written this way when we are being
fully explicit, and this is especially true when our intention is to implicitly define

25 This is true, at least, when we “only” extend our theories finitely many times; which, I submit,
is more than enough in practice.
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new predicates that are intended to range over objects to which our old language did
not refer.6-%’

Second, it’s worth noting that matters are slightly more complex for second-order
theories: the mere consistency of the theories in question does not suffice, and the
result as stated uses a kind of generalization of Field-conservativeness that involves
second-order semantic consequence. While this is certainly a qualification worth
mentioning, it nevertheless seems that the results taken together give us all that
we need. For first-order theories—including the foundational case of most interest
(set theory as codified in ZFC)—consistency suffices. If the theories in question
are second-order, then the stronger condition that they must be (individually)
satisfiable—where satisfiability is, in effect, the semantic analogue of consistency—
is needed. This is very much in the spirit of the consistency requirement: indeed,
for first-order theories, consistency and satisfiability in the relevant sense are
coextensive.

Third—and this is one reason why I do not claim to have a fully diagnostic
solution to Bad Company worries in general—I concede that the result mentioned
does not help much in illuminating the question of Bad Company for abstractionists,
since abstraction principles cannot easily conform to the relativization procedure
discussed above. That said, this last fact may be seen by some as an additional
advantage of the Hilbertian Strategy over the neo-Fregean abstractionist alternative.

5.4 Objections and Replies

In this section I discuss and reply to a number of objections—in keeping with the
spirit of the paper, primarily objections arising from a neo-Fregean perspective.
These can be classified in three broad groups. On the conception considered here,
implicit definition has both semantic and epistemic components. It is supposed to
fix a meaning for the terms introduced, as well as to illuminate and explain our
justification with respect to basic truths involving them. There are correspondingly
two ways in which an implicit definition might be thought to be defective. First, it
could be semantically defective and fail to establish a legitimate meaning for the
terms it is intended to introduce. Second, even if it succeeds semantically, there

26 For more see Field (2016, 12). NB: to say that mathematical theories should be relativized in this
way (i.e. to make explicit which type of object they concern) is not to say that they should be written
as conditional on the existence of objects of the relevant type. Thus what I say here does not take a
stand on the dispute between Field (1984)—who argues that HP is only acceptable conditional on
the claim that numbers exist—and Wright (in Chapter 6 of Hale and Wright 2001)—who replies
that the concept of number, which of course on his view is given by HP itself, is required in order
even to understand the antecedent of such a conditional. Thanks to a referee here.

27 This relativization also allows the Hilbertian to sidestep worries about apparently incompatible
theories: for instance, ZFC + CH vs ZFC + —CH: they will be relativized to different predicates
(say, Set; and Set,), avoiding any actual incompatibility.
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may still be reasons why it fails to provide justification or knowledge. In addition,
there is a third potential source of difficulty: whether Hilbertian theories are capable
of applications of the sort we require from mathematics. In particular, there is a
distinguished line of thought, arguably originating with Frege himself, according
to which the applicability of mathematics must be placed at the center of matters;
some have suggested that this is a reason to prefer the neo-Fregean Strategy. Each
of these groups of complaint will be addressed in turn.

5.4.1 Objections to the Semantic Role of Hilbertian Definitions
5.4.1.1 Generality, Stipulation, and the Caesar Problem

Can instances of the Hilbertian Strategy really bestow a meaning on the novel
vocabulary they contain? Hale and Wright think that there are serious doubts to be
had. They ask us to consider the Ramsification of the conjunction of the axioms of
PA: the sentence obtained by replacing the distinctively arithmetical vocabulary—
S, IN, and O—with variables, and existentially quantifying through these variables.
Then, they consider the effect of stipulating this Ramsey sentence, and make three
claims. First, it cannot be meaning-conferring in any plausible sense, for it contains
no new vocabulary that could stand to receive a meaning. Secondly, although
such a stipulation may (in a perverse way) introduce the concept w-sequence, the
stipulation of its truth is irrelevant in this respect: that concept could equally well
have been introduced by saying that an w-sequence is whatever satisfies the Ramsey
sentence, without any claim that there are such things. Finally, they consider what
the difference between a stipulation of the Ramsey sentence of PA, and PA itself
would be. As they put it, a stipulation of the Ramsey sentence appears to amount to
the command:

Let there be an omega sequence!

But the stipulation of PA itself appears to amount to:

Let there be an omega sequence whose first term is zero, whose every term has a unique
successor, and all of whose terms are natural numbers!?8

so the complaint is:

it is not clear whether there really is any extra content—whether anything genuinely
additional is conveyed by the uses within the second injunction of the terms “zero”,
“successor” and “natural number”. After all, in grasping the notion of an omega-sequence
in the first place, a recipient will have grasped that there will be a unique first member,
and a relation of succession. He learns nothing substantial by being told that, in the series
whose existence has been stipulated, the first member is called “zero” and the relation of
succession is called “successor”—since he does not, to all intents and purposes, know which
are the objects for whose existence the stipulation is responsible. For the same reason, he

28 Hale and Wright (2009a, 470).
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learns nothing by being told that these objects are collectively the “natural numbers”, since
he does not know what natural numbers are. Or if he does, it’s no thanks to our stipulation.?’

The objection can be reconstructed as follows:

(1) A stipulation of the Ramsey sentence for PA is not capable of playing a
meaning-conferring role;

(2) A stipulation of the Ramsey sentence for PA is, in all relevant (i.e. meaning-
conferring respects) equivalent to a stipulation of PA itself;

(3) So, a stipulation of PA is not capable of playing a meaning-conferring role.

This complaint raises subtle questions. To see why, it is helpful to ask the obvious
question: why, if the present complaint is successful, do Hale and Wright not feel
that it has any force against their own neo-Fregean view? Although they do not
explicitly address the point in their discussion, my suspicion is that the answer is
intimately related to the Julius Caesar problem; seeing why will allow us to assess
the objection more adequately.

One way of understanding the Julius Caesar problem for neo-Fregeanism is
as an accusation that HP is vulnerable to precisely the difficulty that is currently
being alleged of PA: in particular, that HP is defective as a meaning-conferring
definition, because it simply does nothing to tell us what the natural numbers are
supposed to be. Although HP tells us something about the natural numbers and
the “number of...” operator, namely that two concepts have the same number iff
they can be put into bijection, it does nothing to enable to us to rule out claims
like 2 = Julius Caesar, because HP is consistent with the natural numbers being
anything whatsoever—even the familiar conqueror of Gaul himself. More generally,
the complaint runs, HP puts us in no position to accept or reject mixed identity
sentences of the form o = B where « is a canonical name for a number and where
B is not; and this signals a major defect in it, understood as an implicit definition.

It is hard not to read Hale and Wright as adverting to this issue when they
complain that a stipulation of PA does not put us in a position to “know which
are the objects for whose existence the stipulation is responsible”.3? In other words,
it seems they suspect that PA does nothing to single out the natural numbers: they
could be anything, as far as we know from the definition, as long as there are enough
of them and they have the relevant properties or stand in the relevant relations.

Hale and Wright, naturally, think that they have the resources to overcome the
Caesar problem insofar as it threatens HP. In very compressed form, their solution
is to appeal to the notion of a pure sortal predicate. Roughly, an entity falls under a
pure sortal predicate if it is “a thing of a particular generic kind—a person, a tree,
a river, a city or a number, for instance—such that it belongs to the essence of the
object to be a thing of that kind.”>' For Hale and Wright, it is intimately part of
the ideology of a pure sortal that it comes with an associated criterion of identity: a

29 Hale and Wright (2009a, 471-2).
30 Hale and Wright (2009a, 470).
31 Hale and Wright (2001, 387).
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principle that canonically determines the truth of identity-statements that contain
terms referring to entities of the relevant sort.3> For instance, Hume’s Principle
can be understood as a criterion of identity for numbers (i.e. numbers are equal
when they apply to equinumerous concepts); the Axiom of Extensionality can be
understood as a criterion of identity for sets (i.e. sets are equal when they have
the same members); spatio-temporal continuity can be understood as a criterion of
identity for physical objects across time; and so on. And here the possibility of an
objection to the Hilbertian Strategy on behalf of the abstractionist opens up. For the
instances of the Hilbertian Strategy that we have been considering do not—unlike
instances of the abstractionist strategy—appear to come ready made with criteria of
identity for the new sortal terms distinctively introduced.

This, I think, is among the strongest objections that the neo-Fregean is in a
position to make. In short: abstraction principles function as criteria of identity; so,
without abstraction principles, the Hilbertian does not have recourse to a criterion of
identity for the objects characterized by the newly-defined vocabulary, and therefore
lacks the resources to answer the Julius Caesar problem. What can be said in
response?

My suggestion is first briefly to step back and examine the reasons why a need
for a criterion of identity appears to arise in the first place. In their solution to the
Caesar problem, Hale and Wright (2001, 389) present a picture in which:

all objects belong to one or another of a smallish range of very general categories, each of

these subdividing into its own respective more or less general pure sorts; and in which

all objects have an essential nature given by the most specific pure sort to which they

belong. Within a category, all distinctions between objects are accountable by reference

to the criterion of identity distinctive of it, while across categories, objects are distinguished
by just that—the fact that they belong to different categories.

The response I propose on behalf of the Hilbertian is to suggest that in order
to sustain this picture—or at least, the part of it that involves mathematical
categories—it is sufficient that we are provided with what we might call theory-
internal adjudications of identity. The idea is that, for at least appropriately chosen
mathematical theories, the theories themselves in some sense “tell us all we need to
know” about the identity of the objects that the theories are about. Let me try and
motivate this with some examples.

1. Set theory. It follows from the axioms of Zermelo Fraenkel set theory that
VxVy (Set(x) A Set(y) > (x =y < Vz(Sz > (2 € x <> 7 €Y))))

i.e. that two sets are identical if they have the same members.

32 Hale and Wright are not explicit whether the notion of an identity criterion is best understood as
epistemological or metaphysical.
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2. Arithmetic. It follows from the Peano axioms that

VxVy INx ANy - (x =y < Vz (Pxz < Pyz)))
i.e. that two natural numbers are identical if they have the same predecessors.
3. Real numbers. It follows from the axioms of suitable treatments of the real
numbers that

ViVy Rx ARy > (x =y <> Vz(Qz = (z <x <z <))

i.e. that two real numbers are identical if they form the same “cut” in the rational
numbers.

4. Complex numbers. It follows from the axioms of suitable treatments of the
complex numbers that

VaVy (Cx ACy — (x =y < (R(x) = R(y) AI@) =3())

where N and J are functions from C — IR that respectively express the real and
imaginary parts of a complex number.

More generally, introduce a new constraint on an acceptable theory intended to
introduce some mathematical sort M—call it Identity—to the effect that the theory
must entail a sentence of the form

VxVy (Mx A My — (x =y < P(x,y))

where & is a formula expressing an equivalence relation on M-objects.

The idea, in brief, is that theory-internal adjudications of identity are capable
of playing the role generally assigned to identity criteria. More specifically, take a
theory that entails a claim of this kind. This allows us to understand an instance of
the Hilbertian Strategy as taking the axioms of the theory as an implicit definition of
a sortal concept: the concept of the relevant kind of mathematical object (perhaps
sets, natural or real numbers, etc). The way in which this handles identity claims
should be clear. Identity claims between objects of the relevant sort are to be
handled straightforwardly in terms of the particular theory-internal adjudication;
whereas the issue of cross-sortal identity claims is dealt with in much the same way
as on the orthodox neo-Fregean account (Hale and Wright (2001, 389): “across
categories, objects are distinguished by just that—the fact that they belong to
different categories.”)

33 An analogous condition could be written out, less perspicaciously, in terms of the successor
function.
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More needs to be said about what, exactly, is required in order for a theory to
provide an internal adjudication of identity in the relevant sense. Ideally, it would
be desirable to enumerate further (necessary and sufficient) conditions. Although I
cannot offer anything like a full theory here, a number of plausible conditions can
be made out, many of which can be adopted straightforwardly from the literature on
criteria of identity.34 For instance, Horsten (2010) mentions these:

1. Formal adequacy: a criterion of identity must express an equivalence relation.

2. Material adequacy: a criterion of identity must be true.

3. Necessity: a criterion of identity must follow from “theoretical principles
concerning the subject matter in question”.

4. Informativeness: a criterion of identity must be informative about the nature of
the entities involved.

5. Non-circularity/Predicativity : a criterion of identity must not (essentially?)
quantify over the entities whose identity is supposed to be established.

The last condition is somewhat tricky to formulate, if indeed it is a genuine
constraint. However exactly it is done, it had presumably better not rule out the
credentials of the Axiom of Extensionality, which is agreed on virtually all sides to
be a paradigm case of an acceptable identity criterion.

At any rate, I do not propose that this list is exhaustive, and no doubt, more
could be said. Nevertheless, I take it that it is extremely encouraging that all of
the rough criteria set out above can be equally plausibly applied to theory-internal
adjudications of identity. Whether or not one wishes to count them as criteria of
identity proper, they each seem plausibly capable of performing the required job of
introducing a genuine sortal concept, thereby allowing us a means of adjudicating
identity claims between objects of the relevant sort and of explaining why identity
claims between mathematical objects and objects of another sort—say, people—
are unproblematically false.?> If that is right, I can see no reason that they should
not play roughly the role that identity-criteria play for the neo-Fregean. At the very
least, we would need to hear a much more detailed case that the form of abstraction

principles are uniquely suited to introducing sortal concepts than we have so far
heard.

341 think that everything in the discussion above is consistent with the claim that what I have been
calling theory-internal adjudications of identity simply are criteria of identity, though I would not
like to make such a claim outright.

35 The appeal to sortal concepts does not adjudicate the issue of identity claims between objects of
putatively distinct mathematical sorts—e.g. the natural number 2 and the real number 2. This is a
subtle issue, for neo-Fregeans as for others. See Fine (2002, 1.5) for discussion. As far as I can tell,
the proposal in Hale and Wright (2001, Ch 14) implies that identity claims of this kind are false.
Thanks to a referee here.
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5.4.1.2 Does the Hilbertian Strategy Attempt to Stipulate Truth?

It is worth briefly considering another complaint, related to the one discussed imme-
diately above, where Hale and Wright appear to accuse the Hilbertian Strategist of
attempting to stipulate entities into existence. Here is a representative passage:

Before there is any question of anybody’s knowing the vehicle to be true, the stipulation
has first to make it true. Regrettably, we human beings are actually pretty limited in this
department—in what we can make true simply by saying, and meaning: let it be so! No
one can effectively make it true, just by stipulation, that there are exactly 200,473 zebras on
the African continent. How is it easier to make it true, just by stipulation, that there is an
w-sequence of (abstract) objects of some so far otherwise unexplained kind? And even if
we do somehow have such singular creationist powers, does anyone have even the slightest
evidence for supposing that we do?...to lay down Dedekind-Peano as true is to stipulate,
not truth-conditions, but truth itself.3°

It seems to me that here, Hale and Wright are misled by their own rhetoric of
“stipulation”. What is going on, the Hilbertian theorist claims, is an instance of
implicit definition, and it works no differently here than it does in the (putatively
more favourable) case of Hume’s Principle. A sentence containing previously
uninterpreted vocabulary is being integrated into a pattern of usage in such a way
as to give the sentence certain truth-conditions and the new vocabulary certain
semantic values; no more, and no less. It is simply a mistake to suppose that anything
objectionably “creationist” is under consideration.

Can anything more be said to support the accusation that Hilbertian implicit
definitions involve the stipulation of truth, whereas abstraction principles merely
assign fruth-conditions to their left-hand-sides? On the neo-Fregean view, the
success of HP (along with suitable definitions) ensures that, e.g. “0=0" has the same
truth-conditions as the claim that the concept x # x is in bijection with itself. Thus,
on a coarse-grained view of “truth-conditions”, HP ensures that this sentence has
necessarily and always satisfied truth-conditions. If that is legitimate, however, there
is no reason why the Hilbertian cannot claim the same status for the axioms of PA.
Can the objection be pressed further if “truth-conditions” are understood in a more
fine-grained way? The Hilbertian could, if necessary, take as the relevant implicit
definition not the axioms of PA themselves but the biconditional consisting of the
conjunction of the axioms on one side and some logical truth on the other. It might
be objected in turn that this is inadequate as an implicit definition, since the choice
of logical truth (and thus the truth-conditions assigned to the conjunction of the PA
axioms) is arbitrary. Perhaps a natural candidate modification for the right-hand-side
of the relevant implicit definition (inspired by the historical Hilbert himself) is the
claim that the axioms of PA are logically consistent.’”

36 Hale and Wright (2009a, 473).
37 Thanks to a referee for pressing for clarity here.
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5.4.2 Objections to the Epistemic Role of Hilbertian Definitions
5.4.2.1 Is HP Objectionably Arrogant?

Let me now turn to a concern, raised by Hale and Wright, to the effect that the
Hilbertian Strategy is arrogant. It proceeds by way of the subtle observation that
the equivalence between the (theories resulting from the) Hilbertian Strategy and
the neo-Fregean Strategy is contingent upon the choice of background logic. More
precisely, the situation is this. If the underlying logic is classical second-order logic,
then HP and PA will have precisely the same models.>® However, consider what
happens when we work within a weaker Aristotelian logic in which the second-
order constants denote and second-order quantifiers range over only instantiated
concepts. In such a setting no empty concept will be countenanced. This impedes
Frege’s theorem from going through at a very early stage: for in order to define the
number zero as the cardinality of some empty concept, one must be available. So,
as Wright and Hale note, taken against a background of Aristotelian logic, HP has
models of both finite and infinite cardinality, while PA has—just as in the classical
case—only infinite models. As they put it:

The least one has to conclude from this disanalogy is that, as a stipulation, Hume is
considerably more modest than Dedekind-Peano: the attempted stipulation of the truth
of Dedekind-Peano is effectively a stipulation of countable infinity; whereas whether or
not Hume carries that consequence is a function of the character of the logic in which
it is embedded—and more specifically, a function of aspects of the logic which, one
might suppose, are not themselves a matter of stipulation at all but depend on the correct
metaphysics of properties and concepts.>

While the logical difference that Hale and Wright advert to is undeniable,
the question is whether it can legitimately be used to support the claim that the
Hilbertian Strategy is objectionably arrogant. This would require the demonstration
of two subclaims: (i) that due to this logical difference, a stipulation of HP really is
“more modest” than a stipulation of PA, and (ii) that this difference genuinely marks
a difference in the acceptability of the two kinds of definition for the epistemic
purposes to which they are intended to be put. It is worth emphasizing that (i) is not
enough—it is clearly consistent to hold that a stipulation of HP is more modest than
a stipulation of PA while maintaining that they both, so to speak, end up on the right
side of the knowledge-conferring line.

To respond, I argue that abstractionists who seek to recover arithmetic cannot
feasibly make this objection.*” For as mentioned earlier, neo-Fregeans want to use
HP plus second-order logic to derive the PA axioms and thereby put the whole of
classical arithmetic within reach. And for just the reasons above, orthodox second-

38 As usual, modulo appropriate definitions.
3 Hale and Wright (2009a, 475).

40 In keeping with the general methodology of the paper, I assume that something like the neo-
Fregean account is tenable, putting aside more fundamental objections.



5 Rescuing Implicit Definition from Abstractionism 119

order logic is required here, for in an Aristotelian setting, that derivation will not
go through. So, presumably, Hale and Wright must feel themselves entitled to
appeal to orthodox second-order logic and thereby somehow to discount what would
otherwise be the epistemic possibility that Aristotelian logic is ultimately the correct
logic. If they are correct, then the logical difference between HP and PA to which
they advert is simply irrelevant, because both neo-Fregeans and Hilbertians are
justified in discounting that Aristotelian logic is appropriate for reasoning in the
relevant setting. To put it another way: if it is a genuine epistemic possibility that
the right logic is Aristotelian, then there may well be grounds for drawing a line
between HP and PA; however, this epistemic possibility would itself undermine the
prospect of grounding arithmetic in the former.

Let us consider another way of pressing the arrogance objection. Recall our
sharpening of the notion above: an implicit definition S is arrogant if (i) there is
some condition C that must be satisfied for the truth of S; (ii) we require justification
that C is satisfied in order to have justification in S; and (iii) we have no justification
that C is satisfied. Is there any case to be made that PA is arrogant but HP is not,
with the claim that there exist infinitely many objects as the relevant condition C?

It is certainly true (assuming the legitimacy of orthodox second-order logic)
that the existence of infinitely many objects is a condition for the truth of both
HP and PA, so (i) holds for both approaches. Plausibly, too, proponents of both
approaches are in a similar epistemic position (prior to the laying down of any
implicit definition) regarding this condition, so that the situation with respect to
its justification is also symmetric. The crux of the issue is whether there is any
scope to argue for a difference in (ii), in particular, that justification in the existence
of an infinity of objects is somehow required in advance of justifiably accepting
PA, but not in advance of justifiably accepting HP. The only way I can see that
this might be done is by arguing that the existence of infinitely many objects is a
immediate consequence of PA, in some epistemically relevant sense of “immediate”,
whereas the same does not go for HP. But I cannot see any plausibility in the
general principle that in order to have justification in P, one must have antecedent
justification in its immediate consequences, on any precisification of the notion
of immediacy. Furthermore, on this view, the arrogance objection would be easy
to defeat by slightly modifying the statement of the Hilbertian Strategy. Take for
instance the version of the view discussed in the last subsection, whereby the
relevant implicit definition is not the axioms themselves but rather the biconditional
consisting of the axioms on one side and the claim that the axioms are consistent on
the other. It is very hard to see any sense in which this principle leads immediately
to the consequence that there exist infinitely objects while Hume’s Principle does
not.
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5.4.3 Objections Concerning the Applicability of Mathematics

A salient feature of the abstractionist strategy concerning at least arithmetic is that
the applications of the theory come off-the-shelf. Hume’s Principle, in effect, builds
into the very identity conditions of numbers their role as, so to speak, measures of
cardinality. By contrast, PA appears simply silent on the question of applicability; it
says nothing, on its face, about how arithmetic can be applied. In particular, although
PA delivers a body of truths concerning the natural numbers, it says nothing about
how we are to decide what the number of, e.g., a concept might be.

With that said, it is not difficult to obtain a perfectly satisfactory “number of”
operator, given the axioms of PA and the resources of implicit definition. An
operator “#” can be defined with the truth-condition that

#O(x) =n < d(x) ~ {x <n}

where ~ expresses equinumerosity in the usual second-order-logical way, {x < n}
expresses the property of being a number strictly less than n (where the less-than
relation is defined in the language of PA as usual). Using standard second-order
resources, this allows the derivation of Hume’s Principle from PA. Consequently
there should be no technical worries that the Hilbertian Strategy for arithmetic is
somehow less able to provide for its applicability.

Nevertheless, a more fundamental objection is lurking. It might be argued that
this opposition—placing the applicability-conditions of numbers at the center of
the implicit definition by which they are introduced versus introducing them in
some other way altogether—is philosophically, if not technically, significant. Many
philosophers, Frege himself included, have placed the applicability of arithmetic
at the heart of the subject. As Frege famously said, “...it is application alone
that elevates arithmetic beyond a game to the rank of a science. So applicability
necessarily belongs to it.”*!

For some clarity on the question, consider two salient families of positions that
one might take concerning the applicability of mathematical theories. First, there
are, following Pincock (2011, 282), what we might call one-stage views. On such
a view, the applicability of mathematical theories is not merely a peripheral feature
of them, something that arises as a happy coincidence once the theory has been
formulated and worked out. Rather, it is part of the content of the theory that it
can be applied in the way that it is. As Wright puts the idea—he calls it Frege’s
Constraint—*"“a satisfactory foundation for a mathematical theory must somehow
build its applications, actual and potential, into its core—into the content it ascribes

to the statements of the theory”.*?

41 Frege et al. (2013, 100).

42 Wright (2000, 324). For an attempt to provide a one-stage account of the real numbers, see
Hale (2000). See also Batitsky (2002) for interesting arguments that Hale’s view is inferior to
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By contrast, consider two-stage views, according to which the application
of mathematics can be understood as a two-step process. The first stage is an
characterization of the subject-matter of (pure) mathematics that is autonomous
of, i.e. makes no reference to, its applications. Examples of such views include
straightforward platonism (according to which mathematics concerns a domain
of mind-independent objects, picked out in a way that does not mention their
applications), modal structuralism (Hellman 1989), ante rem structuralism (Shapiro
1997), and fictionalism (Field 2016).*3

The second stage of a two-stage view then explains how, in light of the
characterization of mathematics at the first stage, applications are possible. For
instance, at a very high level of abstraction, this could be done by beginning with
a purely mathematical domain and appealing to “isomorphism” or “representation”
relations of structural similarity between the mathematical domain and the non-
mathematical domain to which it is to be applied, thereby allowing the complex
mathematical techniques and inference patterns that have been developed in pure
mathematics to be brought to bear on problems concerning the structure of, e.g., the
physical world.

The difference between the Hilbertian Strategy and the neo-Fregean Strategy for
arithmetic can be seen as a microcosm of the opposition between one- and two-
stage views. The neo-Fregean Strategy puts the possibility of counting objects at
the core of the theory of arithmetic, in the strong sense that the very criterion of
identity for numbers essentially involves their role as the measures of cardinality
of concepts. By contrast, the Hilbertian Strategy is silent on the question of the
application—counting—until it is augmented with the Dedekind-inspired definition
of the ‘number of” operator, which, in effect, introduces counting by setting up a
“representation” relation between the objects falling under a certain concept and the
natural numbers themselves.

In light of the foregoing distinction, the possibility of an argument against
the Hilbertian Strategy and in favour of the neo-Fregean opens up—if, that is,
Frege’s Constraint holds. The same goes, mutatis mutandis, for other abstractionist
treatments of mathematical theories: if a one-stage account of the applicability of
the theory is plausibly required, and if the abstraction principle generating the theory
can plausibly be said to place its applicability at the core of the account (in the
way that HP does), then it seems the neo-Fregean Strategy will have demonstrable
advantages over the Hilbertian Strategy. The task for the neo-Fregean is establishing
the plausibility of these required premises. So, let us ask: is there any good argument
for preferring a one-stage account over a two-stage account, in the case of arithmetic

the orthodox representation-theoretic explanation of the applicability of the reals (an explanation
closer to the two-stage accounts I discuss below).

43 Gianluigi Oliveri has helpfully pointed out that Brouwer’s intuitionism is an additional example,
since, for Brouwer, the activities of the mathematical Creative Subject have nothing to do with
applicability (nor with language).
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in particular and in other areas of mathematics in general?** The question is a large
one, but in the remainder of this section I will consider some arguments that one-
stage views are required and attempt to rebut them on behalf of two-stage views.

5.4.3.1 Can Only One-Stage Accounts Explain the Generality
of Applications?

In a discussion of Frege, Dummett argues for something like a one-stage account:

But the applicability of mathematics sets us a problem that we need to solve: what makes
its applications possible, and how are they to be justified? We might seek to solve this
problem piecemeal, in connection with each particular application in turn. Such an attempt
will miss the mark, because what explains the applicability of arithmetic is a common
pattern underlying all its applications. Because of its generality, the solution of the problem
is therefore the proper task of arithmetic itself: it is this task that the formalist [i.e. the two-
stage theorist], who regards each application as achieved by devising a new interpretation
of the uninterpreted formal system and as extrinsic to the manipulation system, repudiates
as no part of the duty of arithmetic]... ]

It is what is in common to all such uses, and only that, which must be incorporated into
the characterisation of the real numbers as mathematical objects: that is how statements
about them can be allotted a sense which explains their applications, without violating the
generality of arithmetic by allusion to any specific type of empirical application.*>

I take the argument in the foregoing to be this: only one-stage accounts of
the applicability of various parts of mathematics (arithmetic and real analysis in
particular) are able intelligibly to explain the possibility of the application of those
theories in the required generality that the phenomenon requires.

In response: I want to say that it is glaringly unclear what is supposed to be
lacking in rival, two-stage (“formalist”) accounts. The charge is that a two-stage
account can give, at best, a piecemeal explanation—missing, as Dummett puts
it, the common pattern. Settle for the sake of argument on a platonist two-stage
view of mathematics. (A similar account will be available, mutatis mutandis, for
other two-stage views.) The explanation is, very roughly, that applications depend
on structural iso- or homomorphisms between the mathematical objects and the
non-mathematical objects that they purport to model. If successful, it explains not
only why the specific non-mathematical domain in question can have mathematics
applied to it, but equally well why any non-mathematical domain that is structurally
similar can have mathematics applied in the same way also. What further common
pattern is there to be explained?

Take the example of arithmetic once again as an illustration. Presumably,
generality in Dummett’s sense here is the datum that Frege himself emphasized

4 For sophisticated recent discussions of the issues surrounding neo-Fregeanism and applications,
congenial to the view proposed here, see Snyder et al. (2020), Panza and Sereni (2019), and Sereni
(2019).

45 Dummett (1991a, 259).
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so heavily, namely that numbers can be assigned to any objects whatsoever (falling
under a particular concept). Frege seeks to explain this with an account of numbers
characterizing them in terms of their role in counting. But why think that such
an account is the only sort able to explain the datum? Why can a two-stage
account of counting not endorse and explain such a claim just as satisfactorily as
the neo-Fregean one-stage account, as follows: all objects can be counted, simply
because any plurality of objects can be linearly ordered and thereby, if finite, related
isomorphically to some initial segment of the natural numbers. I do not see that this
explanation lacks any required generality.

5.4.3.2 Are One-Stage Accounts Required to Do Justice to the Practice
of Applications?

Dummett identifies a second, subtler Fregean argument for one-stage accounts of
applicability. He writes:

The historical genesis of the theory will furnish an indispensable clue to formulating
that general principle governing all possible applications. ...Only by following this
methodological precept can applications of the theory be prevented from assuming the guise
of the miraculous; only so can philosophers of mathematics, and indeed students of the
subject, apprehend the real content of the theory.*®

This line of thought has been developed and expanded by Wright (2000).4
Against roughly what I have called a two-stage view of applications, Wright offers
an intriguing objection. He first notes that it is simply a datum that it is possible
to come to appreciate simple truths of (e.g.) arithmetic via their applications. His
primary example is a schoolyard demonstration that 4 4 3 = 7 by simply counting
on one’s fingers. It is at least plausible that he is right here; surely this is at least
one perfectly acceptable route to certain arithmetical knowledge, and indeed, the
sort of route originally taken by many. But, the objection continues, it is difficult to
square the existence of this route with a two-stage account of applications: it is not
that the arithmetical knowledge is obtained by first apprehending the structure of the
natural numbers and then drawing an inference that the fingers in question can be
isomorphically related to some initial segment thereof; rather, it seems that by going
through the counting routine one thereby grasps the arithmetical proposition itself,
and this suggests that the content of the arithmetical proposition cannot be alienated
from its application conditions in the way that the two-stage theorist contends.

For the sake of clarity, it’s worth emphasizing the complaint is not that two-
stage accounts misrepresent the actual order of understanding.*® Rather, it’s that

46 Dummett (1991a, 300-1).
47 Related issues are further discussed in Wright (2020).

48 Pincock (201 1) seems to read the objection in this way. But this cannot be what is meant, for even
the neo-Fregean’s own approach is highly intellectualized, and in particular, far too intellectualized
to plausibly serve as a reconstruction of the actual order of understanding.
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the two-stage account, even as an idealized, rational reconstruction of our practice,
cannot allow that naive schoolyard demonstrations are demonstrations of genuinely
arithmetical propositions. As Wright puts it, two-stage accounts of arithmetic
“involve a representation of its content from which an appreciation of potential
application will be an additional step, depending upon an awareness of certain
structural affinities.”*® As a result, they seem open to the charge of changing the
subject.”’

I want to outline two possible lines of response here. First, and weakest, one
might simply accept Wright’s point and in response distinguish between different
philosophical projects that one might engage in, differing over the centrality they
accord to actual mathematical practice. We need to ask: what exactly do we want
from a philosophical reconstruction of mathematics? There are different desiderata
here, and they plausibly pull in different directions. On the one hand, one might
seek an account of mathematics that is (at least approximately) faithful to the actual
genealogy of mathematical belief and that, consequently, is able to explain why the
schoolyard demonstration is a way of coming to know arithmetical propositions;
and this might militate towards giving one-stage accounts of at least the most
conceptually basic parts of mathematics. But that is not the only project one might
be interested in. For on the other hand, one might instead emphasize the uniformity
of mathematics, and seek to provide a homogeneous account that takes into account
the most sophisticated modern conceptions of the various mathematical domains.
This may well push us in the direction of giving two-stage accounts across the board,
even at the expense of appearing to create a gulf between sophisticated mathematical
beliefs and their more naive counterparts.

But there is a second line of response worth exploring, one that takes a less
concessive tack and attempts to reconcile two-stage accounts with the datum that
schoolyard demonstrations are (or at least can be) demonstrations of mathematical
propositions. The crucial point to note here is that we seem to require a good deal
of collateral conceptual mastery to count these basic counting routines as genuine
demonstrations of arithmetical facts. What I mean by this is simply that we seem
to require the performer of the routine to demonstrate an awareness that it is in
a certain sense general, not merely to conclude on its basis that 4 fingers and 3
fingers are 7 fingers, but that 4 of anything plus 3 more make 7 things, whatever
things they may happen to be. Getting genuine arithmetical knowledge from this
kind of demonstration requires recognition that the particular features of the objects
involved, aside from their cardinality, are irrelevant. (Consider how reluctant we
would be to ascribe knowledge that 4 4 3 = 7 to someone who goes through the
routine but only seems to appreciate the identity as applied to the number of fingers.)

49 Wright (2000, 327).
307 should emphasize that Wright does not argue that Frege’s constraint holds across the board.
Rather, he thinks, it holds when our initial understanding of a mathematical domain involves
applications; but, in his view, when it does not—as is plausible for, e.g., complex analysis—then a

two-stage account may well be acceptable.
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I think this strongly suggests, contra Wright, that we do require an awareness
of structural affinities—between e.g. the fingers, the numerals used, the natural
numbers they refer to, and indeed any other objects of the same cardinality—in order
for instances of the finger-counting routine to succeed in bestowing arithmetical
knowledge (as opposed to merely knowledge about the particular fingers).’! And if
this is all right, then it is a non-sequitur to think that the two-stage explanation of
applications cannot do justice to the phenomena.>>

5.5 Conclusion

The main thrust of this essay has been that many of the subtle and ingenious
resources devised by abstractionist neo-Fregeans to elaborate and defend their
view can, with equal justice, be appropriated by neo-Hilbertians, who construe the
axioms of mathematical theories themselves as implicit definitions. Furthermore,
I’ve argued that such an approach has certain definite advantages over neo-Fregean
abstractionism, and that it can plausibly respond to the main criticisms that have
been raised against it. Perhaps these criticisms can be developed further, or
additional ones can be pressed. But I hope that at the very least, the Hilbertian
approach is seen as a plausible contender, worthy of further consideration for those
who are tempted by the allure of neo-Fregeanism.>>

Appendix

We prove a result, Lemma 1, which entails both Theorems 1 and 2.

ST am not saying that the only way of making sense of this generality requirement involves a
recognition of structural affinities: indeed, neo-Fregeans offer an alternative explanation, since on
their view the concept of number is given by HP, which itself provides the resources to attribute
number to any concept. The dialectical point still stands, however: once it is recognized that
schoolyard derivations involve further conceptual mastery, the immediate objection against two-
stage accounts is substantially weakened. Thanks to a referee for discussion here.

52 To avoid misunderstanding, my claim that this additional step—the recognition of structural
affinities—is required is not a claim that the resulting belief that 4 + 3 = 7 needs to be inferred
from the schematic application to fingers. I am not making any claims about the architecture of
inference at all. Rather, I am making claims about the architecture of justification, and it is this that
I think supports, or at least is consistent with, the two-stage account.

331 am grateful to two anonymous referees for many constructive suggestions. Thanks to Andrea
Christofidou, Hannes Leitgeb, Sabina Lovibond, Steven Methven, Beau Mount, Gianluigi Oliveri,
Michail Peramatzis, Martin Pickup, Andrea Sereni, Stephen Williams, Crispin Wright, Luca
Zanetti, and audiences at New York University, Worcester College, Oxford, the Munich Center
for Mathematical Philosophy and IUSS-Pavia, for very helpful comments and discussion. Special
thanks to Lavinia Picollo and Jared Warren for detailed comments on several drafts.
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We work with second-order languages without function symbols and only
monadic higher-order variables, for simplicity. Moreover, we assume the only
logical symbols are =, —,V, and 3. First-order languages are understood as
fragments of a second-order language.

If £ is a second-order language, model/interpretation M of .Z is just a model
M of s first-order fragment in which the higher-order quantifiers range over the
power set of M’s domain, | M|.

Let .4, and %), be second-order languages with no individual constants in
common. Let P, and Pj, be monadic predicate symbols not occurring in .%, or .%},.
For each formula ¢ of £, ¢* is the result of relativizing all quantifiers in ¢ to P,,
ie.

¢ if ¢ is atomic
-y if ¢ := =y
¢t =vr vt ifg =y vy
v (P, (v) AY™) if¢:=3Fvy
AV Vv (Vv = P,(w) AY™*) if¢g:=3Vy

In the last clause, v is an individual variable not occurring in ¢. Analogously, if ¢
is a formula of %}, ¢* is the result of relativizing all quantifiers in ¢ to Pp. Let £*
extend %, U %, with P, and P,,. If ', is a set of sentences of %, and I'j, a set of
sentences of .7}, then I'} is the set of sentences ¢* of .£* such that ¢ € I',, and
similarly for I';.

Lemma 1 [f Ty, is satisfiable and, for some ¢ € £, (¢ € £p), T; UL, E ¢*, then
Ly F ¢ (Ty @)

Proof Assume I'}, is satisfiable, so it must have a model, Mj,. Assume, for reductio,
that for some sentence w € %, I'; UT'; F n* but I'y ¥ 7. Thus, I'; U {—} must
have a model M, which is, trivially, a model of ', too. We establish the result by
showing that M, and M), can be extended to a model M* of I'; U I'};; thus we
have 'y UT'} ¥ ™, contradicting our assumption.

Let M* be the following model of .£*:

S ME = Mol U M.
. If ¢ is an individual constant of .%,, then ¢ = cM“, and similarly for .%}.
This is always possible because .%, ad .4}, don’t share any individual constants.
3. If P is a relation symbol exclusively of .%,, PM" = PMa_ and similarly for .%,.
If P occurs both in %, and in .%,, PM" = pMay pMs,
4. PM =Ml and PM = [M,.

N —

M*

If o is an assignment over a model M and d € | M|, 05’ is identical to o except it
maps the individual variable v to d. Similarly, if § € Z(|M]), 05 is identical to o
except it maps the second-order variable V to S.
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Note that, by 1, every assignment o over M, or My, is an assignment over M*.
We prove without loss of generality, by induction on the logical complexity of the
formula ¢ € .%,, that, for every assignment o over M,, M, o E ¢ if and only if
M* o E ¢*.

Note that this would suffice to establish our lemma. For every ¢ € 'y, M, E ¢,
the induction will yield that, for every ¢* € ')}, M™* E ¢*; an analogous result for
', can be proved in a similar fashion, so M* E F;;UFZ. Moreover, since M, E —,
we must have that M* F —7*, which means that I';; U T ¥ 7*.

e If ¢ is an atomic formula, then ¢* = ¢. Since o assigns objects taken from | M|
to each variable of .£*, by 2 and 3, M, o F ¢ iff M*, o E ¢*.
* Assume the claim holds of every formula of lower complexity than ¢.

~ If ¢ := =y, then ¢* = —y*. Thus, M, 0 F ¢ iff My, 0 ¥ ¥ iff, by
inductive hypothesis, M*, o ¥ ¢* iff M*, o F ¢*.

- If ¢ := ¥ V x, then ¢* = ¥* Vv x*. Thus, M,, 0 F ¢ iff M,, 0 F ¢ or
Mg, o E x* iff, by inductive hypothesis, M*, o E ¢* or M*, 0 E x* iff
M* o E ¢*.

— If ¢ := 3x ¢, then ¢* = Ix (P,(x) A ¥*). Thus, M, o £ ¢ iff there is an
d € |[Mg| s.t. My, ol E v iff, by inductive hypothesis, M*, 6@ I y* iff, by
4, M*, 0 E ¢.

— Let ¢ := AX ¢, then ¢* = IX(Vx(Xx — P,(x)) A ¥*). Thus, My, 0 E
¢ iff there is an § C | M| s.t. M, ag E 1 iff, by inductive hypothesis,
M*, o8 Ey*iff, by 4, M*, 0 F ¢.

]

Note that Lemma 1 directly entails Theorem 2. Moreover, Theorem 1 also follows.
For if the theories in question are first-order, then by the completeness theorem, (a)
both theories are satisfiable iff they are consistent, and (b) one theory is a Field*-
conservative extension of the other iff it is a Field-conservative extension; note that
the last case of the previous induction is not relevant for such theories.
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Structures and Structuralisms



Chapter 6 ®
Structural Relativity and Informal Qs
Rigour

Neil Barton

Abstract Informal rigour is the process by which we come to understand particular
mathematical structures and then manifest this rigour through axiomatisations.
Structural relativity is the idea that the kinds of structures we isolate are dependent
upon the logic we employ. We bring together these ideas by considering the level of
informal rigour exhibited by our set-theoretic discourse, and argue that different
foundational programmes should countenance different underlying logics (inter-
mediate between first- and second-order) for formulating set theory. By bringing
considerations of perturbations in modal space to bear on the debate, we will suggest
that a promising option for representing current set-theoretic thought is given by
formulating set theory using quasi-weak second-order logic. These observations
indicate that the usual division of structures into particular (e.g. the natural number
structure) and general (e.g. the group structure) is perhaps too coarse grained; we
should also make a distinction between infentionally and unintentionally general
structures.

Keywords Set theory - Continuum hypothesis - Higher-order logic - Informal
rigour

6.1 Introduction

Mathematicians are often concerned with elucidating structure. In this paper, I'll
examine some issues arising under the following assumption:

(Weak Structuralist Assumption) Part of mathematics and its practice can be understood
as isolating and studying different structures.
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Why is this assumption ‘weak’? Well, the usual statement of structuralism is that
mathematics just is the study of structure.! We do not make such a strong claim.
Rather, we are just assuming the highly plausible claim that mathematics is at least
partly concerned with the specification and study of structure.

Two questions are immediately pertinent:

1. What kinds of different structures are there?
2. How to we isolate them and/or talk about them?

The first question is often answered by distinguishing between two kinds of
structure; particular and general. Isaacson explains the distinction as follows:

The particularity of a particular structure consists in the fact that all its exemplars are
isomorphic to each other. The generality of a general structure consists in the fact that its
various exemplars need not be, and in general are not, isomorphic to each other. (Isaacson,
2011), p. 21

Exactly what different branches of mathematics have an underlying ‘particular
structure’ is a contentious issue (we discuss this later). However, almost everyone
agrees that we can talk about various kinds of finite particular structure (e.g. the
structure of ten objects under some well-order). Normally it is assumed that most of
our arithmetical talk is concerned with a particular structure; the standard model of
arithmetic.”

General structures, by contrast, are not determined up to isomorphism and
include groups, rings, and fields. An example: The group of symmetries on a triangle
and the group of integers—both possess the general structure of being a group, but
the former is finite where the latter is infinite.

It is a somewhat controversial question as to whether these two kinds of structure
are of the same ontological kind or not, since particular structures seem more
fundamental than general structures in the sense that the latter are properties that
the former can possess. We speak, for example, of the particular structure of the
integers exemplifying the ring structure or the particular structure of the natural

' A good example here is Shapiro:

For our first (or second) approximation, then, pure mathematics is the study of structures,
independently of whether they are exemplified in the physical realm, or in any realm for
that matter. (Shapiro, 1997, p. 75)

Examples can be multiplied (e.g. Resnik 1997 and Hellman 1996). More generally, structuralist
ideas have a rich history, appearing in the axiomatic work of Hilbert, Dedekind, and (under one
interpretation) Zermelo. A different direction to the mathematical appeal of Structuralism was
through the study of abstract algebra and related fields in the work of (among others) Bourbaki,
Ore, and Noether (as well as contributions by Hilbert and Dedekind in this field as well), before
the emergence of category theory and contemporary structuralist programmes in philosophy. See
Corry (2004) for an in depth study of the history, and Reck and Schiemer (2019) for a survey of
the state of the art.

2 See Hamkins (2012) for a dissenting voice that we discuss a bit later.
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numbers under addition exemplifying the general structure of a monoid.? Still more
concrete are the systems exemplifying particular structures. For example, the face of
the clock on my wall (with the usual operations of addition) is a system exemplifying
the particular structure of the integers mod 12, which in turn exemplifies the general
group structure.

The second question (how we isolate and talk about the different kinds of
structure) is then easy in the case of general structures for the Weak Structuralist; she
can simply state the conditions she is interested in for some general structure, and
in doing so talks about any particular structures and/or systems that satisfy these
conditions. The question is harder for particular structures, since here there is the
additional challenge of convincing ourselves that we have isolated a structurally
unique entity (at least up to isomorphism*). If a discipline or syntactic theory has
a unique particular structure underlying it, then it is often referred to as a non-
algebraic theory or discipline, those with no corresponding particular structure (or
a general structure) are called algebraic.

One way of tackling the question of when we have isolated a particular structure
can be derived from the work of Kreisel (1967) and has been taken up subsequently
by Isaacson (2011). They suggest that we have a process of informal rigour
by which we obtain mathematical understanding and isolate different particular
structures. The rough idea (which I discuss in more detail below) is that we isolate
a particular structure by becoming more rigorous about a topic, and manifest this
rigour by providing a categorical axiomatisation.

A categorical axiomatisation is a set of axioms T which determine a unique
model up to isomorphism (i.e. any two models of T are isomorphic). Where
categoricity is concerned, one must talk about different logics. The insight provided
by the Lowenheim-Skolem Theorems shows that first-order logic cannot provide

3 Isaacson (2011) seems to take the view that particular structures are somehow more fundamental,
referring to a general structure with no particular instances as “vacuous” (p. 25). Similar remarks
can be found in Leitgeb (2020), where unlabelled graphs are taken as the particular ‘ground level’
structures, and general structures are viewed as higher-order properties or classes of particular
structures.

4 There is a substantial discussion around whether isomorphism is too strong, and perhaps
something weaker like definitional equivalence would be better. We set aside this issue for now,
things are complicated enough without opening that can of worms, despite its interest. For an
overview, see Button and Walsh (2018), Ch. 5.

3 We discuss these distinctions in Sect. 6.2 below. The algebraic vs. non-algebraic distinction goes
back at least to Shapiro (1997, pp. 40—41). Geoffrey Hellman points out that one might wish to
eschew the use of the terms ‘particular’ and ‘general’ when discussing structures in favour of only
talking about algebraic and non-algebraic theories. For the purposes of this paper, I will talk about
both particular/general structures and algebraic/non-algebraic theories, since (a) some authors (e.g.
Isaacson 2011) do use this terminology, (b) locutions like “the integers mod 12 exemplify the group
structure” do not seem obviously impermissible, and (c) nothing too much hangs on this distinction
for the purposes of the paper: My main aim is to analyse how our thought and language interacts
with truth values for different claims—the theorist who wishes to eliminate talk of different kinds
of structure is welcome to re-read the paper attending only to claims about truth values rather than
the taxonomy of structures.
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categorical axiomatisations for infinite structures. It is in the work of Resnik (in
particular Resnik 1997) where we find a notion of structural relativity; the idea
that the structure isolated for different parts of mathematics depends on the logical
resources we consider.

This paper brings together these ideas focussing on set theory as a case study. We
argue for the following claims:

1. For different foundational programmes corresponding to different levels of infor-
mal rigour, it is reasonable to hold that our set-theoretic thought is underwritten
by in a logic stronger than first-order, but weaker than second-order.

2. This shows that the usual distinction between particular and general structures
corresponding to different concepts is more fine-grained than we might have
initially thought. There are concepts that correspond to intentionally general
structures in that the concept is designed to talk about many non-isomorphic
structures. Other concepts correspond to unintentionally general structures,
where we do not intend for the structure we talk about to be general, yet we
do not pin down a particular structure with our discourse.

3. We have some reason to doubt that we are fully informally rigorous about set
theory. Rather, we might hold that our level of informal rigour is partial, and in
particular our level of informal rigour is not yet enough to determinate a truth-
value for the Continuum Hypothesis (CH).

Here’s the plan: Sect. 6.2 examines the notion of informal rigour as it appears
in Kreisel’s (1967) paper and how it relates to the problem of the Continuum
Hypothesis. We’ll make the distinction between top-down informal rigour con-
cerning particular structures (axiomatisations serve as certifications that informal
rigour has been achieved) and bottom-up informal rigour (given an axiomatisation
we use it to characterise particular structures). Section 6.3 presents three possible
interpretations of informal rigour; a quasi-idealist one, a weakly platonistic one, and
a strongly platonistic one (we’ll see shortly what I mean by these terms). Section 6.4
presents the idea of structural relativity. Section 6.5 then examines different states
we may be in with respect to informal rigour on the basis of different foundational
programmes, and examines some possibilities for axiomatisations of our thought.
We develop an assumption of Modal Definiteness; that informal rigour about a
certain subject matter should not permit conceptual refinement motivating radically
different axiomatisations (given a perturbation in temporal or modal space) and use
this to analyse our level of informal rigour. Section 6.6 examines some objections
and replies. In responding to possible objections, I develop a quadrilemma for the
believer that CH has a determinate truth value; either (i) we mystically do not go
astray when coming to justify new axioms, or (ii) we accept that we cannot justify
new set-theoretic axioms, or (iii) it is possible to become less precise about the
structure we talk about as we come to accept more axioms, or (iv) we have to give up
a principle of charity in interpreting set-theoretic claims. Finally Sect. 6.7 concludes
with some open questions.
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6.2 Informal Rigour and the Continuum Hypothesis

In this section we explain informal rigour and the idea that it might be used to
show the existence of particular structures. We’ll do this by explaining Kreisel’s
rough idea, and then formulating a more precise thesis (that particular structures
are determined via informal rigour) at the end of the section. We’ll also explain how
Kreisel thought that his account of informal rigour leads to a determinate truth value
for the Continuum Hypothesis.®

Kreisel (1967) discusses the notion of informal rigour. This represents a
development and refinement of the idea that we work mathematically by examining
our intuitive notions and laying down axioms for them. Kreisel expands this thought
by arguing that the process is not quite so simple; rather than merely analysing our
intuitive concepts, we can become successively clearer about a mathematical subject
matter and then manifest this clarity through axiomatisations. He writes:

Informal rigour wants (i) to make this analysis [of intuitive notions] as precise as possible
(with the means available), in particular to eliminate doubtful properties of the intuitive
notions when drawing conclusions about them; and (ii) to extend this analysis, in particular
not to leave undecided questions which can be decided by full use of evident properties of
these intuitive notions. (Kreisel, 1967, pp. 138-139)

Kreisel’s point is well-taken, and the history of mathematics is replete with
notions that were initially unclear but slowly came to be made precise through
development and reflection. Examples include ideas of completeness/continuity
and denseness (early on these were sometimes confused), the notion of derivative
(we will discuss this later in Sect. 6.6), Cantor’s analysis of the size of sets, and
indeed the notion of set itself was gradually made clearer. However, whilst Kreisel’s
remarks are suggestive, he does not provide a detailed account of exactly what
informal rigour is like. Largely speaking, he takes it for granted that we know what
it is when we see it (at least as far as his Kreisel (1967) is concerned).

Despite this, we can make some progress by examining specific questions:

(1.) What are the targets of informal rigour?’
(2.) How do we achieve informal rigour?
(3.) What are the consequences of informal rigour?

6 Interestingly, it certainly seems like Kreisel held something like the Weak Structuralism. For
example, he writes:

if one thinks of the axioms as conditions on mathematical objects, i.e. on the structures
which satisfy the axioms considered, these axioms make a selection among the basic
objects; they do not tell us what the basic objects are. (Kreisel, 1967, p. 165, emphasis
original)

Whilst the extent to which Kreisel really was a structuralist (rather than merely provided
resources useful to structuralism) is certainly an interesting question, I lack the space to address it
fully here.

71 thank Verena Wagner for pressing this question in discussion.
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For (1.) some taxonomy will be useful. When we talk about mathematical
structure, there are several important aspects:

(a) The concepts we employ in thinking about mathematics (I’ll refer to these using
C, Cy, Cy, ...etc.).

(b) The mathematised natural language(s) we use when speaking about
structure(s). We will refer to these as discourses, and denote them by
(D, Dy, Dy, ...).

(c) Different formal mathematical theories (T, Tg, Ty, ...).

(d) Different mathematical structures, both particular and general (S, Sp, S1, ...).

(e) Different systems exemplifying structures, which for convenience we’ll assume
are model-theoretic structures (9, Mg, My, ...).

It is important to be clear about these distinctions if we are to provide a fully
worked-out account on Kreisel’s behalf. Nowhere is he fully explicit about the
matter, but his discussion (and a reasonable understanding of the notion) seems
to suggest that informal rigour concerns how the concepts underlying discourses
can be refined in coming to be precise about structures. Mathematical practice
involves communicating in a mathematised natural language, and how we interpret
this language is contingent upon the concepts being employed. For example, the
interpretation we ascribe to a computer scientist using the term “set” (in a context
where we can have non-well-founded ‘sets’) is different from the interpretation we
would ascribe to a set theorist working in some extension of ZFC. This isn’t a con-
tradiction; they are simply employing different concepts with their use of language
and mean different things with their usage of the term “set”. Correspondingly, there
are different ways we could systematise or represent their language formally, and in
turn different interpretations of this formal language. At the bottom level, the formal
theories representing different pieces of mathematised language can be interpreted
(contingent on the concepts employed) as about different kinds of structure.

In the rest of the paper, we will assume that the main target of informal rigour is
the concepts we employ when speaking or writing in mathematical language (i.e.
discourses). Perhaps there is more to be said here, but I'm happy to make this
assumption for the purposes of the paper.

With the targets and rough idea of informal rigour in play, we can begin to
address (2.) How do we achieve informal rigour? Kreisel provides four examples,’

8 Juliette Kennedy suggests that talk of concepts is too unclear, and we would be better off
eliminating this language altogether. I am somewhat sympathetic to this position, and certainly feel
that it can sometimes muddy the waters. Despite this, language of this kind is useful for setting up
the debate, and so I'll continue to use it here. For the reader who has doubt about the coherence
of concept-talk, I suggest that they read all mention of concepts as shorthand for their favourite
account of the constituents of thoughts.

9 These include: (I) analysing the difference between independence results, such as the parallels
axiom in geometry and the independence of CH in set theory (the focus of this paper), (IT) the
relation between intuitive consequence and syntactic/semantic consequence (here he gives his
famous ‘squeezing’ argument, arguing that the informal notion of consequence can be squeezed
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key to each is the idea that we develop informal rigour concerning a concept via
working with it in practice. In this way we can develop our intuitions, and come to be
rigorous about a notion. This rigour can then be formally codified. Our interest will
be especially in his remarks about the difference between the independence of the
Parallels Postulate from the second-order axioms of geometry, and the independence
of CH from the axioms of ZFC.

Concerning the axioms of ZFC,,'? Kreisel discusses the following:

Theorem (Zermelo 1930) ' Ler 90t and M be models of ZFC». Then either:

1. 9 and N are isomorphic.
2. M is isomorphic to proper initial segment of N, of the form V. for inaccessible k.
3. Nis isomorphic to proper initial segment of N, of the form V. for inaccessible k.

The core point is the following; whilst there is no full categoricity theorem for
second-order set theory ZFC,, there is for initial segments.!? In particular, many
versions of ZFC; with a specific bound on the number of large cardinals (e.g. “There
are no inaccessible cardinals” or “There are exactly five inaccessible cardinals”) are
categorical.

Concerning this theorem, Kreisel writes:

the actual formulation of axioms played an auxiliary rather than basic role in Zermelo’s

work: the intuitive analysis of the crude mixture of notions, namely the description of the

type structure, led to the good axioms: these constitute a record, not the instruments of
clarification. (Kreisel, 1967, p. 145)

How might we then determine a particular structure according to Kreisel?
Abstractly speaking, Kreisel’s position might then be described as follows. We begin
to work with an informal concept C, employing it in some mathematical discourse
D. Gradually we begin to become clearer about D and C via using them in practice,
and developing our intuitions about the subject. Once we are eventually clear about

between the formal classes of a syntactic derivation in first-order logic and semantic consequence
in first-order logic), (III) Brouwer’s ‘empirical’ propositions, and (IV) showing that the use of
certain models is a conservative extension of arithmetic.

10 ZFC; denotes the second-order formulation of ZFC, where the Axiom Scheme of Replacement
is replaced with a single axiom quantifying over functions, and where the Axiom of Choice
is replaced with the second-order claim that the universe can be well-ordered by a class-sized
function. A concise presentation, including the quasi-categoricity result I discuss, is provided in
Hekking (2015).

1T Shepherdson (1951, 1952, 1953) takes Zermelo (1930)’s proof and clears up a few details. A
modern presentations of proofs are available in Hekking (2015) and Button and Walsh (2018,
§8A), and a version of Zermelo’s proof in modern notation is available in Kanamori (2004). A
different method, developed recently by Viédndnen and Wang (2015) is to move to a proof-theoretic
characterisation of categoricity (so called internal categoricity). We will discuss this move later in
Sect. 6.6. See Button and Walsh (2018, Ch. 11) for an overview of the internal categoricity results.
12 One can obtain a full categoricity proof of sorts with further meta-theoretic assumptions. See
McGee (1997) for a full categoricity result using urelements. Since the assumptions required for
this result are relatively controversial (see e.g. Rumfitt 2015, pp. 273-275) we set it aside here.
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the right concept C’ underlying D (it is at least possible that C' = C here), we will
have obtained sufficient precision to lay down a theory T for C’, which is categorical
in that any system 901 |= T is isomorphic to any other system 97U = T. In this way,
by employing our concept C” and using T, we have determined a particular structure
S up to isomorphism. In the case of set theory, we can think of the development
of the idea of cumulative hierarchy and iterative conception of set after 1900 as
yielding some particular set-theoretic structures by 1930 when Zermelo showed
his 1908 axiomatisation was categorical. We will refer to the way that we can
successively become clear about a concept determining a particular structure, before
manifesting this rigour via a categorical axiomatisation as top-down informal rigour.

Top-down informal rigour is a way of coming to be clear about a concept and
extracting an axiomatisation that determines a particular structure up to isomor-
phism. However it is not the only way that we can determine particular structures.
Once we have accepted some logical resources and mathematical theory (possibly
on top-down grounds) we can use these resources to determine other particular
structures. For example, suppose that we have accepted informal rigour concerning
the concept natural number and that PA, manifests this informal rigour concerning
a single unique structure (via the Dedekind categoricity theorem). We can then be
informally rigorous about the concept hereditarily finite set, since we can find an
interpretation of the hereditarily finite sets in the standard model of PAj, and this
interpretation determines the hereditarily finite sets up to isomorphism.'> But we
needn’t have been already informally rigorous about the concept hereditarily finite
set, we have used other resources to characterise it. We will refer to informal rigour
obtained via other accepted resources as bottom-up informal rigour concerning a
concept.

This brings us on to (3.) What are the consequences of informal rigour? Our focus
will be how informal rigour affects our attitude to the truth value of CH. Key here is
the Zermelo quasi-categoricity theorem; this shows that given an interpretation of
the second-order variables (this will be important later), ZFC, determines several
particular structures corresponding to initial segments of the cumulative hierarchy.

Kreisel took this to show that our talk concerning the cumulative hierarchy, as
axiomatised by ZFC,, was unambiguous. He writes:

Denying the (alleged) bifurcation or multifurcation of our notion of set of the cumulative
hierarchy is nothing else but asserting the properties of our intuitive conception of the
cumulative type-structure mentioned above. (Kreisel, 1967, pp. 144-145)

Why is this significant for CH? Well, since the truth value of CH is settled by
Vp+2 (well below the least inaccessible) and if we think that all models of ZFC;
agree up to the first inaccessible (by the Zermelo quasi-categoricity theorem), then
CH has the same truth-value in all particular structures meeting our informally

13 The interpretation is via the Ackermann encoding of (HF,€) into arithmetic. Sets are
represented by natural numbers, and n Em when the nth binary digit of m is 1. (N, E) is then
isomorphic to (H F, €). Of course, we can then give a categorical axiomatisation of the hereditarily
finite sets using the theory ZFC,-Infinity+*“There are no infinite sets”.
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rigorous concept of set (so the thinking goes). This, as Kreisel points out, makes
the independence of CH from set-theoretic axioms markedly different from the
independence of the Parallels Postulate (PP) from the axioms of geometry; PP can
have different truth-values across models of the second-order axioms of geometry
(once we fix upon some interpretation of the second-order variables), whereas CH
has the same truth value in all models of ZFC, with the same interpretation of the
range of second-order quantifiers.

To make the state of the dialectic precise, and given the difficulty of interpreting
Kreisel, it is worth pulling out the key moving parts of our interpretation of Kreisel’s
presentation:

(Assumption of Informal Rigour) A putatively non-algebraic mathematical discourse D
determines a particular structure S when we are informally rigorous in employing the
relevant concept C corresponding to D, and this informal rigour can be manifested in a
categorical axiomatisation T of C such that for any systems 91 and 9V exemplifying S,
both 9t and DMV satisfy T and are isomorphic.

(Manifestation Thesis) We become informally rigorous about a concept C through either
(a) developing our mathematical understanding of C by working with it in practice (i.e.
top-down rigour), or (b) characterising it through already accepted resources (i.e. bottom-
up rigour). In the case of concepts for particular structures, this understanding can then be
manifested by a categorical axiomatisation T. (In other words, the existence of a categorical
axiomatisation is necessary for us to have informal rigour about a concept determining a
particular structure.)

(Segment Particularity Thesis) We are informally rigorous about the concept cumulative
type structure below the first inaccessible, and this concept is axiomatised by the theory
ZFC; + “There are no inaccessible cardinals” and determines a particular structure.

(CH-Determinateness Thesis) The concept cumulative type structure suffices to determine
a truth value for CH.

(Difference Thesis) The kind of independence exhibited by CH (relative to ZFC,) and PP
(relative to the axioms of geometry) are of fundamentally different kinds.

In what follows, we shall take the Assumption of Informal Rigour as an assump-
tion (though we’ll discuss how to flesh it out in more detail). This is just because I'm
interested in exploring the idea; it’s clearly a very controversial assumption! We’ll
argue that the Segment Particularity Thesis and CH-Determinateness Thesis can be
challenged. We’ll then argue that the Manifestation Thesis suggests that our thought
is perhaps best axiomatised by something weaker than ZFC;. We’ll also argue that
the Difference Thesis still holds true.

6.3 Three Interpretations of Informal Rigour

In the last section, we saw some theses that one might extract from Kreisel’s paper
on informal rigour. In this section, I’ll present three ways of interpreting this process
of informal rigour that will be important for later.
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6.3.1 Isaacson’s Kreisel

One way of interpreting the process of informal rigour has been proposed by Dan
Isaacson (2011). There he seems to commit himself to the Assumption of Informal
Rigour in the following passage:

We achieve understanding of the notion of mathematical structure not by axiomatizing the
notion but by reflecting on the development of mathematical practice by which particular
mathematical structures come to be understood, the natural numbers, the Euclidean [plane],
the real numbers, etc.

How do we know that such structures exist? The question is likely to be construed
in such a way that it is a bad question. There is nothing we can do to establish that
particular mathematical structures exist apart from articulating a coherent conception of
such a particular structure. (Isaacson, 2011, p. 29)

as well as the Manifestation Thesis:

...if the mathematical community at some stage in the development of mathematics has
succeeded in becoming (informally) clear about a particular mathematical structure, this
clarity can be made mathematically exact. Of course by the general theorems that establish
first-order languages as incapable of characterizing infinite structures the mathematical
specification of the structure about which we are clear will be in a higher-order language,
usually by means of a full second-order language. Why must there be such a characteriza-
tion? Answer: if the clarity is genuine, there must be a way to articulate it precisely. if there
is no such way, the seeming clarity must be illusory. (Isaacson, 2011, p. 39)

However, his interpretation of these notions is decidedly not objectual in the
platonistic sense of concerning mind-independent abstract objects:

The basis of mathematics is conceptual and epistemological, not ontological, and under-
standing particular mathematical structures is prior to axiomatic characterization. When
such a resulting axiomatization is categorical, a particular mathematical structure is
established. Particular mathematical structures are not mathematical objects. They are
characterizations. (Isaacson, 2011, p. 38, my emphasis)

So, for Isaacson, the process of informal rigour can be understood as a mind-
dependent activity in some sense. The process of informal rigour should not be
understood as one where we pick out some pre-existing ontological objects, but
rather as the determination of a particular structure using our thought and language,
one that does not exist in advance of our characterising activity (in this sense,
his view is quasi-idealist). This precision in our concept is then manifested by a
categorical axiomatisation T.

Isaacson’s claim that particular structures just are characterisations is a little
puzzling; the claim that particular structures are literally numerically identical
with theories (i.e. characterisations) has the whiff of a category mistake about
it. However, it serves to show further how we might think of informal rigour as
a process of mathematical claims being dependent upon our epistemological and
conceptual activity, rather than any independently existing structural domain.

Isaacson’s version of informal rigour does not commit him to an ‘anything goes’
version of conventionalism. First, given some employed concepts about which we
are informally rigorous, there can be objective facts about what follows from that
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concept.'* This is visible from Isaacson’s endorsement of the CH-Determinateness
Thesis.!> Moreover, we are able to fix infinitely many structures in this way via
bottom-up characterisations.'® For example, the categoricity of the natural numbers
establishes infinitely many particular structures, e.g. the structure exemplified by
(n, <) for any chosen n. Since it is unclear whether or not Kreisel would have
accepted Isaacson’s interpretation, I shall refer to a character I call ‘Isaacson’s
Kreisel’ as a proponent of this view of informal rigour.

6.3.2 Weak Kreiselian Platonism

Isaacson’s Kreisel represents a version of informal rigour which feeds into a quite
anthropocentric characterisation of the notion of structure. On his characterisation,
informal rigour concerning the concepts employed in a discourse is constitutive of
establishing the relevant structure in question.

Instead, we might have a more platonistic conception of informal rigour. One
might rather hold that structures are mind-independent, and there are many abstract
concepts we can employ in talking about those structures.

Given a discourse D and employment of a concept Cp underlying this discourse,
informal rigour on this picture consists of a successive narrowing down and
improvement of the concept Cy.!” If C¢ does not already determine some particular
structure S, this may then necessitate moving to a sharper concept C; to underwrite
D. Once we have become sufficiently informally rigorous about the concept
underlying D (this might take several iterations of conceptual refinement) and have

14 A good question, one we do not have space to address here, is how Isaacson’s version of Kreisel
relates to Ferreirds (2016)’s account of mathematics as invention cum discovery.

15 He writes:

...the independence of the continuum hypothesis does not establish the existence of a
multiplicity of set theories. in a sense made precise and established by the use of second-
order logic, there is only one set theory of the continuum. it remains an open question
whether in that set theory there is an infinite subset of the power set of the natural numbers
that is not equinumerous with the whole power set. (Isaacson, 2011, pp. 48-49)

16 He writes:

While indeed there are up to any given moment of course only finitely many theorems
establishing categorical characterizations of structures, e.g. of the natural numbers, the
real and complex numbers, the Euclidean plane, the cumulative hierarchy of sets up to a
particular ordinal, one such theorem may establish categorical characterization of infinitely
many particular substructures. (Isaacson, 2011, p. 38)

170f course, there may be more than one concept involved, in which case we might have to
consider a concepts Cy, ..., Cy instead. I suppress this complication; nothing in my arguments
hangs on there being just one concept or many.
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pinned down some mind-independent particular structure S with some concept C»,
we are then able to provide our categorical axiomatisation T corresponding to Cy.'8

In many ways, at a practical level, the Weak Kreiselian Platonist and Isaacson’s
Kreisel have much in common. They both think that mathematics depends in some
way on us, the Weak Kreselian Platonist because the ways we refine our concepts
are presumably dependent upon us (even though they may be constrained), and
Isaacson’s Kreisel because mathematical structures are determined by our activity.
They differ in that the Kreselian Platonist thinks that the structures we talk about,
and plausibly the concepts employ, are independent of us and informal rigour allows
us to make a selection between them. Isaacson’s Kreisel, on the other hand, thinks
that the structures are determined by us, rather than discovered.

6.3.3 Strong Kreiselian Platonism

There is a stronger version of Kreiselian Platonism. The key additional assumption
is the following: '

(Set-Theoretic Uniqueness) There is one and only one correct concept C for discourse that
is sufficiently ‘set-like’ (i.e. concerns extensional objects), and it is possible for us to have
informal rigour about C. Informal rigour should be understood as a way of approximating
C ever more closely.

So, for the Strong Kreiselian Platonist, it is not only the case that we may refine
concepts in coming to be informally rigorous but also that we tend towards exactly
one such way of filling out the concept in the case of set theory.

We then have three figures; Isaacson’s Kreisel, the Weak Kreiselian Platonist, and
the Strong Kreiselian Platonist. We shall argue that for Isaacson’s Kreisel and the
Weak Kreiselian Platonist, the status of the informal rigour of the universe of sets
(and in particular the Continuum Hypothesis) is questionable. The Strong Kreiselian
Platonist can hold on to the full informal rigour of the set concept up to a certain
level, but we will argue that their position faces a quadrilemma.

18 One question, that we shall leave as an open question at the end of the paper, is how we should
understand this process of conceptual refinement. For example: Do the concepts stay the same, or
do they change when we refine our concepts? For the purposes of discussing informal rigour and
whether or not CH is determinate, I'm not sure this matters so much, but for the future development
of set theory (and mathematics more generally) we might wonder how conceptual refinement
figures in debates about, for example, the temporal continuity of subject matter in mathematics.
I am grateful to Chris Scambler for many hours of interesting discussion here.

197 am grateful to Leon Horsten for suggesting this interpretation, and Daniel Kuby for some
additional discussion led me to realise that I also needed to consider the weaker form of Kreiselian
Platonism as discussed in the last subsection.
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6.4 Structural Relativity

We are now at a point where we have said a little more about how we might
fill out an account of informal rigour, and provided some possible philosophical
interpretations of the notion. For the purposes of our arguments in Sect. 6.5 and
interpreting our own set-theoretic discourse, it will be useful to set up the idea of
structural relativity.

Structural relativity is the idea that the structure isolated by a particular piece
of mathematical discourse is contingent upon the logic used to underwrite it. It is
discussed explicitly by Resnik (1997):

In thinking about formulating a theory of structures we must take into account a phe-
nomenon I will call structural relativity, the structures we can discern and describe are
a function of the background devices we have available for depicting structures ... This
relativity arises whether we think of patterns and structures as a kind of mould, format, or
stencil for producing instances, or as whatever remains invariant when we apply a certain
kind of transformation, or as an equivalence class or type associated with some equivalence
relation. The structures we recognize will be relative to our devices for specifying forms, or
transformations or equivalence relations. (Resnik, 1997, p. 250)

The idea then for Resnik is that the kind of structures we can talk about can
vary contingent upon the logical resources we employ. For the same mathematical
discourse D, we might pick many different formal theories to underwrite it, and
many different kinds of structure might be thereby isolated. For example, he writes:

If we limit ourselves to describing structures as the models of various first-order schemata,
then the types of structures we will define will be like the more coarse-grained ones
frequently found in abstract algebra. Here one starts by defining a type of structure such
as a group, a ring, or a lattice with the intention of allowing for many non-isomorphic
examples of the same type. As a result most of our structural descriptions will fail to be
categorical. On the other hand, using second-order schemata, we can formulate categorical
descriptions of the structures studied by (second-order) number theory, Euclidean geometry
and analysis, and categorical extensions of [ZFC;] that are considered powerful enough for
most mathematical needs.
Thus, depending upon our logical resources, we might introduce:
The First-Order Natural Number Structure,
The Second-Order Natural Number Structure,
The First-Order Structure of the Reals,
The Second-Order Structure of the Reals,
and so on.

By going to stronger logics we get more fine grained versions of the various structures.
(Resnik, 1997, p. 252)

So, for example, we can consider our talk about natural numbers as either
formalised in first-order Peano Arithmetic (PA), or in second-order Peano Arith-
metic (PA,). The latter axiomatisation corresponds (given the full semantics) to the
particular structure of the standard model of natural numbers, the former on the
other hand is a general structure that is can be both instantiated by the standard
model (where, presumably, Con(PA) holds), but also can be instantiated by non-
isomorphic non-standard models (where, for example, =Con(PA) can hold).
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The above passage is fairly indicative of what seems to be a (false) dichotomy
underlying parts of the literature; we are presented with the choice between
either using first-order resources (where almost nothing is categorical, only finite
structures) or full second-order resources (where an enormous amount of our
mathematical talk is fully categorical).2” This dichotomy does not adequately reflect
the fact that in mathematical logic we have a wide range of logics intermediate
between first-order and second-order. The properties of these logics are well-
understood,?! and it is surprising that they have not been considered in detail in
the context of structural relativity. This is not to say that authors (including Resnik)
intend this false dichotomy, just that largely speaking in the structuralist literature
these are the two options proffered.

Admitting intermediate logics into interpretations of structural relativity opens
up a host of possibilities. Once we free ourselves of the binary choice between
first- and second-order resources, we have the option of considering many different
formal theories for underwriting a discourse. There is a wide variety of options
here, including increasing our resources beyond first-order with certain operators
(e.g. ancestral logic) or alternatively allowing infinitary conjunctions or quantifier
alternations. Since we will be interested here in theories that we can wuse in
manifesting informal rigour, we set aside the use of infinitary resources. In the next
section, we shall see how versions of set theory incorporating structural relativity
given by weak second-order logic and quasi-weak second-order logic correspond to
two natural positions about informal rigour concerning the cumulative hierarchy.

6.5 The Concept of Set, Degrees of Informal Rigour,
and Structural Relativity

We are now in a position where:>>

(1.) Informal rigour in the concepts underlying a discourse is manifested by
axiomatisations that are categorical, either by top-down or bottom-up
approaches.

20 [saacson, for example, writes:

As Shapiro and others have long noted, the language in which to articulate our understand-
ing of particular mathematical structures is second-order. .. (Isaacson, 2011, p.28)

21 See, for example, Shapiro (1991, Ch. 9) or Shapiro (2001).

22 This section, and in particular my discussion of what I'Il call the Modal Definiteness Assump-
tion, is enormously indebted to Chris Scambler. We worked on this together as part of a joint
project, and I am very grateful for his kind permission to include the following discussion in this
piece. Of course, any mistakes made in filling out the details should be attributed to me rather than
Chris.
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(2.) We have three different ways of interpreting informal rigour, via Isaacson’s
Kreisel, Weak Kreiselian Platonism, and Strong Kreiselian Platonism.

(3.) Structural relativity may come in to play, whereby the kinds of structures we
isolate are contingent upon the background logic we use.

In this section, I’ll consider some examples that show how we might not be fully
informally rigorous about our set-theoretic discourse and set concept. I'll then argue
that there are reasons to think that there may be a degree of structural relativity
involved in the axiomatisation of our thought concerning sets. Nonetheless, I shall
argue that we are (and have been) partially informally rigorous, and our discourse
about portions of the hierarchy can be understood as about particular structures. To
do this, I’ll look at a Predicativism proposed by Feferman and Hellman, and then
historically at Mirimanoff’s thought concerning the Axiom of Foundation, before
considering our own axiomatisation of set theory in terms of ZFC and our possible
attitudes to CH.

In order to make out my conclusions, it will be useful first to analyse in a little
more detail what we might expect from an account of informal rigour. Important for
Kreisel’s notion is that our concept of set, and the informal rigour we have about it,
is a source for axioms. He writes:

What one means here is that the intuitive notion of the cumulative type structure provides
a coherent source of axioms; our understanding is sufficient to avoid an endless string of
ambiguities to be resolved by further basic distinctions. .. 23 (Kreisel, 1967, p. 144)

Isaacson agrees, at least insofar as interpretation of Kreisel goes:

In order actually to solve the continuum problem a formalizable derivation from axioms, of
the kind which Cohen and Godel’s results show not to exist from the first-order axioms of
ZF, must be found. This means that new axioms are required. (Isaacson, 2011, p. 16)

My point is the following: If we are informally rigorous about a discourse D
and the concepts underlying it, and hence have determined a particular structure, we
can expect the use of these concepts as a “coherent source of axioms” not to lead
us in radically different directions. Of course, it is possible to have beliefs about a
structure that turn out to be false (as when I believe an eventually false conjecture),
but it should not be the case that radically different concepts, with radically different
theories and consequences are legitimate ways of refining our current concepts. We
therefore identify the following:

(The Modal Definiteness Assumption or MDA) If we are informally rigorous about a

mathematical discourse D, using a concept Cy to determine a particular structure S, then
there should not be two (or more) legitimate ways of refining Cy (to some C; and C7)

23 Kreisel continues:*“. .. like the distinction above between abstract properties and sets of some-
thing.”, speaking about the distinction between intensional entities and sets (this intensionality he
seems to diagnose as the source of the class-theoretic paradoxes). Since this diagnosis is rather
controversial, I’1l set it aside here.
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such that C; motivates a theory T and C, motivates a theory T, such that T; and T, are
inconsistent with one another.2*

Why do I call this assumption ‘modal’? Throughout the rest of the paper, we
will consider small perturbations concerning how things might have gone in the
past, or might go in the future, and show that given these assumptions an agent’s
concepts might be expanded in different ways to incompatible extensions. This then
casts doubt on the claim that their concept is informally rigorous and determines a
particular structure regarding some subject matter.

The Modal Definiteness Assumption is definitely controversial, but also intu-
itively plausible. If our discourse and concepts already determine a particular
structure (via informal rigour) then there should not be equally legitimate ways
of sharpening our concepts that are inconsistent with one another, since the truth
values of all claims in the discourse are already set by this structure. Therefore
one of the two theories has to be false, thus one of the two concept-schemes is
inferior, and so they are not equally legitimate.”> Of course, what constitutes a
‘legitimate’ extension is going to be something of debate, but the rough idea is
that a change or refinement of a concept is one that still coheres with the original,
but adds well-motivated content. Whilst these are difficult ideas to make precise, I
hope that examination of the examples I provide from the philosophy of set theory
will make it clear that there may be such sharpenings, and hence by the MDA we
may not be informally rigorous about our concept of set. However, let us first see
how the MDA might play out in a positive case where we do take ourselves to have
informal rigour.

6.5.1 The Radical Relativist

Suppose we believe that our discourse about the natural numbers, underwritten by
our concept of natural number, is informally rigorous and this informal rigour is
manifested by PA; and the attendant Dedekind-categoricity theorem. Along comes
the Radical Relativist who says to us: You cannot be informally rigorous about
arithmetic, since there are legitimate consistent extensions PA; 4+ Con(PA3) and
PA; +—Con(PAj) of PA; that are inconsistent with one another (where Con (PA,)
is the consistency sentence for PA; given the syntactic deduction relation for
second-order logic?%). What should are reaction be?

24 Many thanks to Daniela Schuster for pressing me to become clearer about my formulation of the
MDA.

25 If you’re familiar with debates in the philosophy of set theory, you might already see where I'm
going here.

26 This will, of course, not be complete. Nonetheless one can define this relation, see Button and
Walsh (2018).



6 Structural Relativity and Informal Rigour 149

Our response should be the following: Of course these extensions are formally
consistent, in the sense that assuming PAj is w-consistent (given the incomplete
syntactic deduction relation for second-order logic) a contradiction is not derivable
in either PA; + Con(PA;) or PA; + —Con(PA;). One is nonetheless clearly
legitimate where the other is not. In particular, PA, 4+ —Con(PA;) can only be
true in models that are non-standard, both in that (i) the interpretation of the second-
order variables has to be given by a Henkin semantics that permits a two-sorted
first-order characterisation, and (ii) the theory also has consequences (assuming
PA; is in fact consistent) that do not accord with our concept of natural number,
for example models of the theory contain a natural number n*, such that for any
particular standard natural number n given to me, n* is greater than n. So it is simply
not true that PA> + Con(PA;) and PA; +—Con(PA;) are both legitimate extensions
of PA,, at least insofar as axiomatising our concepts and thought concerning the
particular structure of natural numbers is concerned.

Moreover, there is no categoricity theorem for the theory PA; + —Con(PA»),
and indeed it can have highly non-isomorphic models. In fact, since we must allow
non-full Henkin interpretations here, we are effectively working in a two-sorted
first-order framework, and so the usual trappings of first-order logic apply. So there
can be no categoricity theorem for this theory, and hence no informal rigour.

This will provide a contrast case for our main examples; considering a Pred-
icativism proposed by Feferman and Hellman, examining the historical situation
with respect to Miramanoff and the Axiom of Foundation, and our contemporary
situation with respect to set theory and CH.

6.5.2 The Predicative Iterabilist

We now consider a slightly different situation, one in which we have agents whose
thought is best axiomatised by a version of set theory intermediate between first and
second-order ZFC.

Suppose that one accepts that we are informally rigorous about the concept
of natural number, but has extreme reservations about the whole of set theory.
A view providing a predicative foundation for arithmetic has been advanced by
Feferman and Hellman in a pair of papers Feferman and Hellman (1995) and
Hellman and Feferman (2000).27 In Feferman and Hellman (1995) they define a
system EFSC (for Elementary theory of Finite Sets and Classes) and provide a
categoricity proof for natural number systems within EFSC. Suppose further that a
Predicativist of the Feferman-Hellman variety expands their concepts and accepts
the iterative conception as a conceptual idea, and hence regards ZFC as a (probably)
consistent theory worthy of study, but has extreme reservations about informal

271 am grateful to Geoffrey Hellman for pointing to the position of Feferman and Hellman as a
possible case study.
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rigour concerning the notions of arbitrary subset and arbitrary well-order. Instead,
they think that we can only be informally rigorous about things that are predicatively
defined, and think that it’s possible that our thinking might not be informally
rigorous and fail to determine particular structures at large infinite ordinals. Call
this character the Predicative Iterabilist. What should the Predicative Iterabilist say
about our set-theoretic thought concerning the iterative conception?

To make our points (here and later) we first need to set up some terminology.

Two background logics will be of special interest for us:?8

Definition Weak second-order logic is the logic in which we allow the same
vocabulary as second-order logic 92”[% (where K are the non-logical symbols) but
with function variables removed.

Its semantics is given by letting the second-order quantifiers range over finite
relations. Let 90T be a model with domain M. We define a finite assignment s on O
as assignment s that assigns a member of M to each first-order variable, and a finite
n-place relation on M to each n-place relation variable. Satisfaction is defined in
the usual manner for the first-order connectives and quantifiers, and second-order
quantification is handled by the clause:

M, s = VX¢ iff for every finite assignment s’ that agrees with s (except possibly at X),
M, s" = ¢.

The instances of Comprehension AXVy(X(y) < ¢(y)) which are valid on a
structure 91 are those where the extension of ¢ is finite in 1.

Let ZFC,w be set theory formulated in weak second-order logic with instances
of the replacement scheme for each formula of the weak second-order language.

Definition Quasi-Weak Second-Order Logic is the same as Weak Second-Order
Logic, but in the semantics each variable assignment assigns countable relations
to the variables (i.e. we assign countable relations instead of finite ones). So VX ¢
holds iff for all countable X, ¢ holds.

Let ZFCypw be set theory formulated in quasi-weak second-order logic with
instances of the replacement scheme for each formula of the quasi-weak second-
order language.

It is useful to identify some facts off the bat:>

Fact Both ZFC,pw and ZFC,y are able to characterise categorically the natural
numbers (i.e. any two models of ZFCypw and ZFC,y always have the standard
natural numbers as their standard model of arithmetic, and indeed any two models of
PA; with the full semantics within a model of ZFC,gw or ZFCsy are isomorphic).

28 The presentations given here are heavily indebted to Shapiro (2001).
2 See Shapiro (2001) for discussion of these results.
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This is because we can characterise the notion of finiteness in both quasi-weak and
weak second-order logic.>” The same goes for the rational numbers.!

Fact ZFC,¢ is able to characterise the theory of real analysis up to isomorphism.
Essentially, this is because we can characterise the completeness principle for the
reals in ZFC2QW.32 In ZFC,w, however, one cannot characterise the reals up to
isomorphism, since the Lowenheim number of Weak Second-Order Logic is Ro. 33

Fact ZFC,¢ is able to characterise the notion of well-foundedness, that is, all
models of ZFCypw are well-founded.3*

Fact ZFC,y is not able to characterise the notion of well-foundedness (i.e. there
are models of ZFC,y with a non-well-founded membership relation).>>

These facts show that quasi-weak second-order logic has substantially more
expressive power than weak second-order logic; we can characterise more notions
within in it (and in turn, the versions of set theory formulated in the respective logics
differ in their expressive power and intended models).

So, we have several logics and versions of ZFC-like set theory rendered in
them in view. Now, the Predicative Iterabilist will hold that we are informally
rigorous about the natural numbers, but have grave worries about our informal
rigour concerning the iterative conception in general. In this case, we might
think that our thought about ZFC-based set theory and the concept of cumulative
type structure is best axiomatised by ZFC,y. There we are able to identify the
rational and natural numbers up to isomorphism, but the real numbers cannot be so
identified, and various large well-orderings (e.g. wICK ) cannot be characterised up
to isomorphism.3°

If you are a Predicative Iterabilist, you are thus likely to hold that our talk about
the concept cumulative type structure is only partially informally rigorous, and this
level of partial informal rigour is manifested in ZFC,w. We thus have a coherent
position on which a level of informal rigour is manifested in a logic stronger than
first-order but weaker than second-order.

30 See Shapiro (2001), p. 161, and Theorem 16 and Corollary 17 on p. 162.

31 This is because we can characterise the notion of minimal closure in the two logics, and the
rational numbers can be characterised up to isomorphism as an infinite field arising from the
minimal closure of {1} under the field operations and their inverses. See Shapiro (2001, p. 161).
32 See Shapiro (1991, pp. 164—165).

33 See Shapiro (2001, pp. 161-162).

34 Assuming Choice in the meta-theory, the fact that every countable class is a set in a model of
ZFCyw ensures this. See Shapiro (1991, p. 165).

35 This is because there is a natural equivalence between being a model of ZFCyy and being an -
model of ZFC (see Shapiro 1991, p. 162, Corollary 17) and there are non-well-founded w-models
of ZFC.

36 See here Shapiro (1991, p. 163).
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We can make out this point using the MDA.37 If I am a Predicative Iterabilist
I believe I have grounds for the determinacy of thought concerning the natural
numbers, but not the full real numbers, impredicatively defined. How can they make
the grounds for this indeterminacy precise using the MDA? Well, they accept the
use of ZFCyy as underwriting our theory of sets by recognising as absolute the
finite sets of a given set, and the natural numbers as determinate. This framework
supports informal rigour regarding the concept finite subset of the natural numbers,
and this is enough to pin down the natural numbers up to isomorphism. But when
we look to expand our theory to the real numbers this framework can be extended in
two different incompatible ways. On the one hand, we can extend our determinate
theory of the natural numbers to the classical continuum via Dedekind-cuts or
equivalence classes of Cauchy sequences in the rationals. On the other hand, we
could extend to the intuitionistic continuum, as developed by Brouwer, Heyting
and others. These two extensions formally contradict one another; for example the
intuitionistic theory proves that all functions are (uniformly) continuous, whereas
in the classical continuum we have many discontinuous functions.>® Thus, the
Predicative Iterabilist can spell out why she does not think that there is informal
rigour concerning the reals in terms of the MDA. Moreover, if we restrict the
discussion to the classical continuum, there are still different ways of extending
her theory ZFC,y; we might choose to include or exclude axioms of definable
determinacy. She also has a quick explanation of why the MDA does not speak
against her belief in determinateness concerning the natural numbers; there are
no known legitimate expansions of her concept of natural numbers that motivate
inconsistent theories. As mentioned in Sect.6.5.1, our concept of natural number
clearly excludes known independent sentences (like Godelian diagonal sentences)
as being theory expansions concerning a legitimate conceptual refinement.

Later (Sect.6.5.4) we shall see that a similar argument can be made for the
believer that the reals are determinate, assuming that we accept axioms of definable
determinacy (axioms with close relationships to large cardinals). Of course, the
believer in the Segment Particularity Thesis on the basis of the quasi-categoricity
of ZFC, will reject this application of the MDA. We will discuss the place of the
quasi-categoricity theorem later (Sect. 6.6), for now we just note that the example
as presented shows that we can have a coherent position on which our reasoning
is axiomatised by a set theory couched in a logic intermediate between first- and
second-order and this belief can be made precise on grounds involving the MDA.
Before we discuss CH, we will mention a historical example.

371 am grateful to Geoffrey Hellman for suggesting this as a possible objection to my final position
that ZFC,gw is a plausible candidate to underwrite our discourse involving sets. By re-purposing
the objection to the case of the Predicative Iterabilist, I think that it bolsters the role of the MDA in
making precise grounds for indeterminacy.

38 Examples can be multiplied. A simpler example is the intuitionistic theorem that it is not the case
that any given infinite sequence of Os and 1s, the sequence is either composed of Os everywhere or
contains a 1 somewhere, contradicting the obvious classical fact. See Dummett (1977, Ch. 3), for
a proof.
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6.5.3 Miramanoff’s Informal Rigour

The following example will provide an example where we have a failure of informal
rigour on the basis of the MDA, but might nonetheless think that substantial parts
of mathematics are informally rigorous, and as such we have partial informal rigour
in the notion of set. We’ll see, however, that the example is more analogous to PP
than CH (the latter we consider in Sect. 6.5.4).

In 1917, Dimitry Mirimanoff wrote a paper entitled ‘Les antinomies de Russell
et de Burali-Forti et le probleéme fondamental de la théorie des ensembles’. In this
paper, he considers Russell’s Paradox and the Burali-Forti Paradox, and identifies
two kinds of sets; the ‘ordinary’ ones and the ‘extraordinary’ ones. These were
to be differentiated by whether or not they contain infinite descending sequences
of membership; the ordinary ones do not (in current terminology: they have
a well-founded membership relation) and the extraordinary ones do (in current
terminology: they have a non-well-founded membership relation):

I will say that a set is ordinary just in case it gives rise to finite descents, I will say that it is

extraordinary when among its descents are some that are infinite. (Mirimanoff 1917, p. 42,
my translation)’®

It is clear that Mirimanoff (1917) was undecided about whether the Axiom of
Foundation was a basic principle about sets. It is also fairly clear, we think, that he
was not fully informally rigorous about set theory. To see this, it suffices to consider
what theory might have underwritten his thinking about sets, and show that there
are different legitimate extensions that are inconsistent with one another.

Clearly Mirimanoff thought that sets were extensional and he explicitly discusses
the axioms of pairing and union, as well as replacement. For the purposes of our
discussion, let us assume that he was clear that his notion of set supported at least
the first-order axioms of ZF without the Axiom of Foundation. (It doesn’t matter
so much whether or not these were actually Mirimanoff’s views, as long as this
character is at least possible it shows the kinds of situations that are compatible with
informal rigour in set theory.)

Can Mirimanoff’s level of informal rigour support more? Is he informally
rigorous about the Axiom of Foundation? We answer this negatively using the
Modal Definiteness Assumption. We argue that there are legitimate extensions of
Mirimanoff’s concept that support inconsistent theories of sets (such as ZF and
ZF-Foundation4-AFA).*? Clearly the former is a legitimate extension, since it is

39 The original French reads:

Je dirai qu’un ensemble est ordinaire lorsqu’il ne donne lieu qu’a des descentes finies;
je dirai qu’il est extraordinaire lorsque parmi ses descentes il y en a qui sont infinies.
(Mirimanoff, 1917, p. 42)

40 Here AFA denotes Aczel’s Anti-Foundation Axiom, which has strong affinities with the graph
conception of set. See Aczel (1988).
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what we (as a matter of fact) use now on the basis of our concept of cumulative
type structure. Is the latter a legitimate extension of ZF-Foundation? One might be
tempted to answer no: The iterative conception of set clearly prohibits the existence
of non-well-founded sets.

The iterative conception is emphatically not Mirimanoff’s conception of set,
however. Whilst he has the concept of ordinal and rank in play,*' it is not
really until Zermelo (1930) that we start to see the idea of cumulative type
structure emerge, solidified in Godel’s work on L (in Godel 1940), and it was
not until the late 1960s and 1970s that the idea of the iterative conception and its
relation to ZFC were fully isolated.*? Indeed, Mirimanoff seems to treat non-well-
founded sets as legitimate objects worthy of study, formulating a specific notion
of isomorphism known as tree-isomorphism that works for both non-well-founded
and well-founded sets.*> The following situation is then possible: Suppose that
instead of the iterative conception becoming the default conception of set, the graph
conception of set (on which sets are viewed as given by directed graphs) became the
default set-theoretic conception. We might, for example, have been persuaded by
considerations about non-well-founded sets emerging in computer science (as when
they are used to model concurrent processes).** Then, it seems reasonable to accept
that Mirimanoff’s intellectual descendants would have accepted that there were non-
well-founded sets. By the MDA, he can’t then have been fully informally rigorous,
since there are inconsistent ways of extending the concept he was employing about
his discourse.

It is then tempting to say that Mirimanoff’s thinking might be best captured by
first-order ZF without Foundation. We should resist this temptation. Mirimanoft’s
context is plausibly one in which he was informally rigorous about what the natural
numbers were, and indeed his work comes after Dedekind’s categoricity proof (in
Dedekind 1888). In particular, his definition of well-foundedness depends on the
notion of finiteness; he characterises well-founded sets as those which only have
finite descending membership chains, rather than using the contemporary first-order
statement of the Axiom of Foundation in terms of the claim that every non-empty set
A contains a set B such that AN B is empty (a formulation which appears in Zermelo
1930).45 But, by the Compactness Theorem, finiteness cannot be characterised
using first-order logic, nor can the natural numbers.*¢ It is overwhelmingly likely

41 The notion of ordinal recurs throughout his discussion of the Burali-Forti Paradox, and he
discusses the notion of rank on p. 51 of Mirimanoff (1917).

42 In Boolos (1971), for example. See Kanamori (1996) for a thorough discussion of the history.
43 See Aczel (1988, p. 105).

44 See here Incurvati (2014) for a description of the graph conception and Aczel (1988) for a
summary of non-well-founded sets (as well as some useful historical remarks in Appendix A).

45 See here Aczel (1988, p. 107). Independently, von Neumann presented this formulation in 1929.
46 In fact, being able to capture these two notions is roughly equivalent, since “x is finite” can
be parsed in terms of being bijective with a standard natural number, and “x is standard natural

number” can be parsed as being a finite successor-distance away from 0. See Shapiro (2001, p.
155) for the details.
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that he would have not accepted non-standard models of arithmetic as legitimate
interpretations in the same sense as his own.

Since Mirimanoff was also well aware that arithmetic could be coded in set
theory, we are at a point where we would like to say that his discourse about
parts of set theory such as the natural numbers and finite sets are informally
rigorous and determined a particular structure. It is also plausible (putting aside
worries of Predicativism) that he was informally rigorous around 1915 about the
notion of real number, by this stage he was working on the intellectual foundations
that had already been laid by Cauchy, Weierstrass, Cantor, and Dedekind, and the
categoricity of the real line had been proved. However, by the MDA, his discourse
about set theory in general was not informally rigorous. Thus, if we are to provide
an axiomatisation for underwriting his discourse and concept of set, we should use
a theory and logic that is not fully categorical, but nonetheless can identify parts of
set theory up to isomorphism.

What should we say about Mirimanoff’s level of informal rigour? Well, to
review:

(1.) His concept of set did not clearly support the Axiom of Foundation.

(2.) Ttis highly plausible that he was informally rigorous about the natural numbers
and the real numbers.

(3.) Itis highly plausible that he was informally rigorous about the concept of well-
order (being able to distinguish and talk about the extraordinary and ordinary
sets).

We can then say that Mirimanoff’s level of informal rigour about set theory
can be roughly characterised by ZFC,pw-Foundation (i.e. ZFCypw with the
Axiom of Foundation removed). There, we can characterise the usual objects of
mathematics including the real, rational, and natural numbers (since the categorical
characterisations of these theories do not depend on the Axiom of Foundation).
Moreover, he can formulate and discuss his worries about well-foundedness in this
logic. However, he is not fully informally rigorous, since there are incompatible
legitimate expansions of the concept he was working with (namely to one supporting
the foundation axiom and to one supporting its negation).

We should remark though that Mirimanoff’s situation is more like the situation
we have with the Axiom of Parallels in geometry, rather than what we have in
ZFC, with respect to CH. This is because there is no categoricity proof for ZFC,-
Foundation as there are models of ZFC;-Foundation in which Foundation holds and
others in which it fails. So whilst our example shows that there might have been a
case where we failed to be informally rigorous about our notion of set, it does not
yet show the possibility of a situation where we are not, where we have the iterative
conception of set.
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6.5.4 Modal Definiteness and the Continuum Hypothesis

So then: What now about our own thought concerning the Continuum Hypothesis?
My contention is that, given the Modal Definiteness Assumption, we have good
reason to think that we are not fully informally rigorous about our concept of set. To
see this, it is useful to consider two active programs targeting the resolution of CH
in the contemporary foundations of set theory, namely forcing axioms and Woodin’s
Ultimate-L programme.

We omit the details here, since they are technically rather tricky, and many
questions are still open. A rough description of each, however, will help to see
the senses in which they present legitimate conceptual refinements of our concept
of cumulative type structure. Both kinds of programme attempt to capture notions
of ‘maximality’ in some way. Ultimate-L does so by incorporating large cardinals
in an elegant manner, potentially providing a model in which many questions are
decidable but large cardinals can also exist.*’ Forcing axioms on the other hand
ensure that various kinds of subset exist; in technical terms, they assert that the
universe has already been saturated under the existence of generic filters for certain
partial orders and families of dense sets. Both represent somewhat different takes
on how our concept of set may develop; Ultimate-L focusses on the development
of large cardinals and inner model theory, whereas forcing axioms try to capture the
idea of a rich process of subset formation.

Crucially, if we take the Ultimate-L approach, we can prove CH, and strong
forcing axioms such as the Proper Forcing Axiom (PFA) imply —CH. They
therefore represent inconsistent extensions of our current best theory of sets. They
also both seem legitimate; both correspond to natural ways we might develop our
set concept.

Given the MDA, it seems then that we are not fully informally rigorous about our
concept of set. It is also plausible, however, that we have a good deal of informal
rigour. We seem to have informal rigour about the natural numbers, where the
only known independent statements are all equivalent to consistency statements,
and the negation of these are illegitimate extensions (assuming that we think the
axioms really are consistent). For second-order arithmetic, under both Ultimate-L
and PFA there are no obvious analogues of CH; both programmes imply Projective
Determinacy and there are no known sentences of ZFC independent from the theory
ZFC—Powerset+V = H(wp) (other than Godelian-style diagonal sentences). It
also seems clear that our concept of cumulative hierarchy supports the idea that we
are informally rigorous about the claim that all sets are well-founded.

47 Whether we can construct Ultimate-L depends crucially on several conjectures in inner model
theory. See Woodin (2017) for details. The key point is that if we are able to build a model that is ‘L-
like’ and contains a supercompact cardinal, such a model would be able to tolerate all known large
cardinal axioms that are also consistent, in contrast to the situation with V = L and measurable
cardinals (assuming that the existence of a measurable cardinal is, in fact, consistent).
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Given this, it seems that our level of informal rigour in the cumulative hierarchy
of sets might be top-down manifested by ZFC,ow. In quasi-weak second-order
logic (and hence ZFC;,w) one can (bottom-up):48

(1.) Characterise H (1) up to isomorphism by the theory consisting of:

(i) Extensionality
(i1) The axiom “Every set is countable”.
(iii) The Axiom of Foundation, expressed as the claim that there is no w-length
infinite descending €-sequence.
(iv) The sentence in quasi-weak second-order logic expressing “every count-
able subclass of the domain of discourse is the extension of a set”.

This further bolsters our earlier claim that ZFC;ow underlies our set-theoretic
thought, since (given Projective Determinacy) no MDA-style argument is
forthcoming for H (wy).

(2.) The field of reals (R, +, x, <) is the only model (up to isomorphism) of the
theory of ordered fields with the sentence of quasi-weak second-order logic
expressing the claim that all Cauchy sequences converge and the Archimedean
property that for every x in the domain of discourse, there is a finite sequence
(yi10 <i < n) of elements of the domain such that x < y,, yo = 1, and for all
i <n,yit1 =1+yi.

(3.) The standard model of second-order arithmetic can be characterised up to
isomorphism (since every subset of natural numbers is countable, and quasi-
weak second-order logic has an absolute interpretation for the range of the
variables concerning countable relations).

However we can also point out:

Fact There are models of ZFC,¢gw in which CH holds, and models of ZFC,pw in
which CH fails.*’

48T am grateful to an anonymous reviewer for suggesting the specifics of these examples.
49T am grateful to Victoria Gitman for working with me on the following proof:

Proof Start in a model 9 = ZFC + —CH (by preparatory forcing if necessary). Next collapse
\Pm(w)l to w; using the forcing poset Col(w, P(w)) in M. By design, M[G] = CH. But M[G]
also has the same countable relations on members of 91 as 91 itself, since it is a standard fact
about Col(w;, P(w)) that it is countably closed. (If a countable relation R were added, one can
look at the countably many conditions p, € Col(wi, P(w)) forcing that x € R, and (by countable
closure) infer that R was already in 91.) Thus 9t and M[G]:

(i) Have the same countable relations on sets in 9t (for this reason 9t and 9G] have the same
reals).
(i) Differ on the truth value of CH.

Hence 9MM[G] thinks that both 9T and IM[G] satisfy ZFC;ow (since, according to IMM[G], M has
all its countable relations) but differ on CH. Hence CH is not fixed by ZFCsow. u]
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Thus, given the MDA and the Manifestation Thesis, we might think that our
current level of informal rigour is manifested by ZFCjow; a logic intermediate
between first- and second-order. In this theory, when we can construct an argument
for indeterminacy from the MDA we do not have the ability to provide a categorical
characterisation, but if no such MDA-style argument is forthcoming (as is the case
for the reals under Projective Determinacy) we can characterise many of the relevant
structures up to isomorphism.

6.6 Objections and Replies

In this section I'll consider some objections and replies. These will not only help to
shore up my position, but also will help to see some features of the account.

Objection What about the Zermelo Categoricity Theorem? One question for the
arguments I have posed is immediate: What becomes of the Zermelo Quasi-
Categoricity Theorem? One might think that the theorem shows that our thought
about the sets is informally rigorous and determines some particular structures (for
example those with a specific number of inaccessible cardinals). Earlier, I claimed
that it is plausible that there are extensions of our current set concept that support
Ultimate-L and others that support forcing axioms (let’s take PFA to make things
concrete). I then claimed on the basis of the MDA that our set-theoretic discourse
and concepts were not informally rigorous. But this is not so (so one might counter-
argue) whilst both PFA and Ultimate-L are (let’s assume) syntactically consistent
with ZFC;, only one of them can be true under ZFC, with the full semantics, the
other will require a Henkin-style interpretation to make both it and ZFC, true. So
it is just not correct to say that both are legitimate; the concept that motivates a
theory that is false under the full semantics requires non-standardness of a certain
kind (albeit not as serious as the one required for e.g. =Con(ZFC,)).

The issue here is that this objection assumes that we have access to the range of
the second-order variables in making the criticism. We already need to be informally
rigorous about the range of second-order variables if we are to hold that ZFC; is a
good encoding of our level of informal rigour. Similar points have been repeatedly
stressed throughout the literature,’® but it is particularly relevant to the current
context; a categoricity theorem is meant to encode informal rigour that we have
about a certain subject matter, not give us informal rigour (unless we have already

50 See Meadows (2013) for a survey. Hamkins is also explicit about the point when discussing a
version of the categoricity argument in Martin (2001):

The multiversist objects to Martin’s presumption that we are able to compare the two
set concepts in a coherent way. Which set concept are we using when undertaking the
comparison? (Hamkins, 2012, p. 427)
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accepted some resources for a bottom-up characterisation). If we don’t have full
informal rigour about set theory (which I've argued for on the basis of the Modal
Definiteness Assumption) it is not necessary for us to accept that the categoricity
theorem yields genuine clarity.!

It is instructive here to consider our different interpretations of informal rigour.
Isaacson’s Kreisel should accept (contrary to what Isaacson claims) that there are
different legitimate extensions of our concept of set. This is because for Isaacson’s
Kreisel, informal rigour is dependent upon the degree to which we have understood
a mathematical subject matter. If we expand our concept of set Cp to one Cj
producing a consistent axiomatisation (as, let’s assume, both Ultimate-L and PFA
do) our understanding should be cashed out in terms of this new concept C1, and
this determines (given that we are employing C;) a subject matter that supports
either PFA or Ultimate-L, depending on which route we pick. Given then that for
Isaacson’s Kreisel the subject matter we talk about is determined by the concepts we
employ, he should accept that we are able to go in different possible directions with
our concept, and thus that we are currently not informally rigorous; our set-theoretic
discourse is ambiguous between several different sharpenings of the notion.

For exactly the same reason, the Weak Kreiselian Platonist should accept that
we are not fully informally rigorous about our concept of set. Recall that for her,
informal rigour should be understood as coming to employ ever more platonistically
existing precise concepts of set. But for this reason, it’s entirely possible that
we select one concept that supports PFA in the future and also possible that we
select one that supports Ultimate-L. In this way, our thinking might be currently
ambiguous between several different sharpenings of the concept.

The only person who can argue that the quasi-categoricity theorem in fact shows
that ZFC, encodes our level of informal rigour is the Strong Kreiselian Platonist.
They hold that there is a unique correct concept that we are tending towards using
informal rigour. This concept can then serve to interpret the second-order variables,
given that ZFC, is already quasi-categorical. Therefore (they claim) the case as I've
set things up is not possible; one of PFA and Ultimate- L (or neither) is correct about
this concept, and the process of informal rigour will lead us towards it. Therefore,
exactly one or neither of PFA and Ultimate-L is legitimate, and it is just not possible
to legitimately expand our concept in incompatible ways and at least one of PFA
and Ultimate-L demands a non-full Henkin semantics for its interpretation. Hence,
even accepting the MDA we can have informal rigour; simply put there are not
incompatible legitimate extensions of our concept.

LA different move here would be to shift to internal categoricity. If one buys the MDA, however,
one will be forced to accept some indeterminacy, blocking the argument to determinacy of CH.
For example, even given an internal categoricity argument, indeterminacy in either the range of the
first-order quantifiers or in the use of classical logic blocks the argument, in the first case because
an internal categoricity result only determines CH within some restricted first-order domain, and in
the second case because the proof of categoricity itself uses classical logic. See Scambler (Under
review) for discussion of this issue.



160 N. Barton

This represents a coherent position, but not one that I find very plausible due
a quadrilemma that I’ll develop over the next few pages. The Strong Kreiselian
Platonist has to accept that we simply could not coherently follow a different
intellectual path from the one we have. But this is an enormously strong claim!
What about cases where the kinds of modelling requirements we encounter are
very different? Suppose, for example, that there are two physically (or even
metaphysically) possible worlds Wi and W, at which the modelling requirements
for foundations are very different, and W; suggests Ultimate-L where W, suggests
PFA. Should we insist that the agents at those worlds with different modelling
requirements are doing something illegitimate if they select the ‘wrong’ concept
of set? It seems to me that the agents in the two different cases simply employ
different concepts, and use them to talk about different subject matters. But the
Strong Kreselian Platonist has to either (a) accept that there is a fundamentally
‘correct’ interpretation for the second-order variables, and the thinking of one of
the two communities’ thinking is quite simply flawed, or (b) has to deny that such
a situation is really possible. I do not find (b) especially plausible since possible
worlds are pretty easy to come by.>?

The situation can be made more vivid by a kind of pessimistic probabilistic
argument. Assume that we do have a fully determinate interpretation of ZFC,;.
Notice that it might be that in fact borh Ultimate-L and PFA are false in their
full generality, even if one is correct about the status of CH. In fact, there are
myriad different ways we might develop our set-theoretic axiomatisation, so why
should we expect the one we pick to be right? Our understanding of the Generalised
Continuum Hypothesis tells us that we can consistently have pretty much whatever
pattern we like for the cardinal behaviour of infinite powersets (not to mention a
whole gamut of other set-theoretic principles). So, if we believe that there really is
a fully determinate ZFC, model below the first inaccessible, it is overwhelmingly
unlikely (without further argument) that we pick exactly the right axiomatisation,
and it is we who are saying false things, and can only be interpreted as speaking
consistently about non-standard Henkin interpretations.

If, given the Strong Kreiselian Platonist’s position, we can coherently justify
false set-theoretic principles, we obtain the following further counter-intuitive
consequence: We can come to be less precise about the structure we talk about
by developing our concept of set and accepting new axioms. Presumably, the Strong
Kreiselian Platonist will want to assert that, given an agent A that has come to accept
some false axiom(s) ¢o, . . ., ¢, extending ZFC, that can be satisfied in a transitive
model, we should (given a principle of charity) interpret A as saying true things

2 For example Ben-David et al. (2019) showed that a certain learnability problem in machine
learning is equivalent to CH. Much of the discussion of this problem (e.g. in Taylor 2019)
consists of whether or not the algorithms in question are ‘real-world” implementable. But if we
just have to find some possible world or other rather than the actual world, then these worries
about implementation are not so concerning. We can then easily cook-up possible worlds (in some
loose sense of possibility) such that in one the evidence points to the learnability of the problem
and another in which it points in the other direction.
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about the relevant transitive models in which ¢y, ..., ¢, can be realised, with a
Henkin semantics for the relevant second-order variables. This is all well and good
when there is an obvious unique model that can be identified as the place to interpret
what she says. For example, suppose that we are considering the concept cumulative
type structure below the first inaccessible, and further that A believes V = L, but
(as it turns out) there are non-constructible reals below the first inaccessible. Then,
letting x be the least inaccessible, (L, €, PL(k)) is a natural Henkin model in
which to interpret A’s discourse, and A has not lost precision in developing their
concept of set to one motivating V = L. However, if ¢y, ..., ¢, imply that there
are unboundedly many measurable cardinals (as many of the candidate extensions
of ZFC, do), then we can point to the following:

Fact If a theory T (extending ZFC, and mentioning only set-many parameters) is
such that T F*“There are unboundedly many measurable cardinals”, then there is no
least model of T under inclusion (within any (Vy, €, P(Vy)) = ZFC,).>3

The core philosophical point is the following: Supposing that the advocate of
PFA also accepts the existence of unboundedly-many measurable cardinals, if one
of Ultimate-L and PFA+“There are unboundedly many measurable cardinals” is
false, then there is no easily identifiable unique model in which the agent accepting
the false theory can be interpreted. Thus, by accepting more axioms on the basis
of conceptual refinement (and thus, one might think, becoming more precise about
their concept of set) they lose precision concerning the structure they talk about,
compared to when they do not accept a refined axiomatisation and stick with ZFC,.
This, one might think, is undesirable; we should become more precise, not less
precise, by refining our concepts (at least insofar as mathematics is concerned).

Geoffrey Hellman vigorously objects to the conclusion that any of these alterna-
tives undermines the Strong Kreiselian Platonist’s position. My arguments are not
meant to be knock-down, and indeed one can dig in one’s heels here. However, if
one does so, one will have to take on one of the following horns of a quadrilemma.
Either:

(i) We will not, as a matter of fact, go astray in justifying new axioms extending
ZFC,.
Challenge: If we take this horn of the quadrilemma, we then have to explain
why we will not go astray in justifying new axioms. This looks like a difficult
task and has the whiff of mysticism about it.

331 thank Monroe Eskew for discussion of the following:

Proof Let 9 be a transitive model of T and let « € 9 be such that « > rank(a) for every
parameter a mentioned in T. Let x be a measurable above «. Then the embedding induced by
the measurability of « produces a proper inner model 9t of T within 91 (after finding a suitable
Henkin interpretation for the second-order variables). Repeating the process yields the conclusion
that there is no model of T least under inclusion contained in 1. If T does not contain parameters,
then one measurable cardinal suffices. O
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(i) We accept ZFC;, but also hold that we cannot justify axioms extending it
(except perhaps large cardinals). ZFC, (possibly with large cardinals added)
is the limit of our possible justifications.

Challenge: This option essentially gives up on trying to resolve any sentences
that are not consequences of large cardinals (e.g. CH).

(iil) An agent can become less precise by refining their set concept (if they pick an
axiom with some false consequences).

Challenge: This response seems counter-intuitive; conceptual refinements
should result in more rather than less precision.

(iv) One rejects the principle of charity, and accepts that in coming to justify new

axioms, we might just say false things about the structure of sets, rather than
true things about a range of structures.
Challenge: This likely ascribes a widespread error theory to many attempts to
extend ZFC,. In particular (given the pessimistic probabilistic argument) it is
likely that we will be in error in futures in which we accept a theory resolving
questions independent of ZFC, (plus large cardinals).

It is not impossible to take on one of the horns of the quadrilemma. However,
we should contrast the position offered by the Strong Kreiselian Platonist with the
alternative offered by either Isaacson’s Kreisel or the Weak Kreiselian Platonist.
They can argue that whilst we are not yet informally rigorous about our concept
of set, and statements like CH are indeterminate given the concept we employ, we
might be informally rigorous in the future. Just look, for example, at the progress
that has been made in the hundred years or so since Mirimanoff was writing; our
concept of set now clearly underwrites the claim that all sets are well-founded.
Perhaps in the future we will come to a fully informally rigorous conception of set
on which MDA-style arguments are not possible. However, even in this case we
should acknowledge that it is not the case that things had to be this way. Both the
Weak Kreiselian Platonist and Isaacson’s Kreisel can avoid each of the problems
for the Strong Kreiselian Platonist by accepting that what we talk about is partly
determined by the axioms we come to justify, and there is no particular ‘absolute’
interpretation that we are tending towards (or may miss). This difference, whilst it is
unlikely to convince the die-hard Strong Kreiselian Platonist, may be dialectically
effective for those of us who remain agnostic on the issue, and also presents a
challenge for the Strong Kreiselian to explain how they plan on taking on one of
the horns.

We can still accept some implications for the quasi-categoricity theorem even
given this picture. For, the quasi-categoricity theorem establishes that given an
interpretation of the second-order variables, a particular structure is identified by
ZFC, (with some specific bound on the inaccessibles).”* We might think that

54 Multiversists are often explicit on this point. For example Hamkins writes:

If we make explicit the role of the background set-theoretic context, then the argument
appears to reduce to the claim that within any fixed set-theoretic background concept,
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this fact has philosophical import. Meadows (2013) identifies three roles for a
categoricity theorem:
(1.) to demonstrate that there is a unique structure which corresponds to some mathemati-
cal intuition or practice;

(2.) to demonstrate that a theory picks out a unique structure; and
(3.) to classify different types of theory. (Meadows, 2013, p. 526)

He is sceptical about the possibility of (1.) for similar reasons to those I have
presented here: The categoricity theorem presupposes the determinateness of the
notions it is trying to characterise. However, this is where informal rigour has a role
to play; given that we have convinced ourselves of informal rigour, the categoricity
theorem tells us that our axiomatisation of this notion has been successful. (2.)
is thus important; once we believe we have informal rigour, we need to provide
a categorical characterisation to manifest this informal rigour (and ensure that
the clarity is genuine). I have argued that for set theory, we are not quite there.
However, (3.) is important whether or not we actually have informal rigour. The
quasi-categoricity theorem for ZFC,, no matter whether or not we are precise about
exactly what structures with boundedly many inaccessibles it concerns, does tell
us that set theory is non-algebraic. It tells us that our thought at least aims at
specifying a particular structure, and hence is not like concepts and theories of
general structure (such as that of group) that explicitly aim at dealing with many
different non-isomorphic structures. Inside every model of ZFC,ow (which I've
argued is possibly the most natural theory for representing our thought about sets),
the Zermelo Categoricity Theorem holds and ZFC, (with a specific bound on
the inaccessibles) is a theory for talking about one isomorphic structure. It is just
that this structure can vary across different models of ZFCow. Whilst we are
not informally rigorous about set theory, the categoricity theorem shows that this
situation is intolerable, there is pressure to become informally rigorous about set
theory, even if we currently lack it. This shows that the Difference Thesis (that the
case of PP and CH are fundamentally different from one another) can be retained,
even in the face of less than full informal rigour in our set concept.

This observation shows that the distinction between particular and general
structures, whilst not incorrect per se, is rather coarse grained. In particular, the
idea of general structure further subdivides. First, there are those general structures
whose concept does not produce a theory for which there is a categoricity proof
(e.g. group), and thus there is no pressure to hold that informal rigour requires
us to determine a particular structure. Call these intentionally general structures.
There are other concepts (e.g. set below the first inaccessible) where we do have
an axiomatisation with a categoricity proof, even if we don’t take ourselves to be

any set concept that has all the sets agrees with that background concept; and hence any
two of them agree with each other. But such a claim seems far from categoricity, should
one entertain the idea that there can be different incompatible set-theoretic backgrounds.
(Hamkins, 2012, p. 427)
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informally rigorous yet. We call these unintentionally general structures. For set
theory, whilst we should not take ourselves to have determined a particular structure,
there are still portions of structures corresponding to this concept that are particular
(e.g. the representations of some countable structures within models of theories
corresponding to our set concept).

Challenge How do we know when we reach informal rigour? In responding to
the last objection, I suggested that there are certain concepts (and discourse) about
which we are not yet informally rigorous, but there is nonetheless pressure to
become informally rigorous. This immediately raises the following question: How
do we know when we are informally rigorous?

My answer here is a little speculative, but it suggests some interesting directions
for future research. We begin with the following idea:

Definition (Informal and Philosophical) We say that a theory T exhibits a high-
degree of theoretical completeness when there are no known sentences other than
meta-theoretic sentences (e.g. Godelian diagonal sentences) independent from T.

I acknowledge that this definition is somewhat imprecise. In particular I have no
technical account on offer of what is meant by ‘meta-theoretic’ statements, and I
hope that future philosophical research will clarify this notion further. However, it
seems that we have some handle on the notion though, there seems to be a sense in
which Con(ZFC) is a statement of a very different kind from CH.>

Given a handle upon the notion, I have the following suggestion; a good
indicator’® of informal rigour is the existence of a categoricity theorem for the
relevant second-order theory and a high-degree of theoretical completeness (i.e. the
only known sentences independent from our theory are obviously meta-theoretic in
some way). If this is the case, then if we take ourselves to be informally rigorous and
in fact all known independent statements are meta-theoretic, then we can’t construct
the kind of simplistic argument from the MDA that I"ve considered here; any known
candidate independent statement does not correspond to a legitimate extension of
the concept by design.”’

This is precisely our current situation in arithmetic. Moreover, as mentioned
earlier, if we accept Projective Determinacy (which is agreed on by proponents
of both Ultimate-L and PFA, since they both think that ADL®) holds) then the
same situation holds for H(w;); the only sentences about H (wi) that are known

53 Not least because Con(ZFC) is absolute for well-founded models of ZFC, which I've argued
our concept of set is sufficient to determine.

361 stop short of claiming full sufficiency, simply because I'm not clear that these requirements are
sufficient and I don’t want to overstate my case. The conjecture that replaces “good indicator” with

“sufficient” is still worthy of study.

57 Walter Dean suggests that this part of my view can be seen as a kind of transcendental refutation
of the existence of Orey sentences for a given concept. This seems to be precisely what informal
rigour should be aiming at; removing the Orey-phenomenon wherever possible by determining a
particular structure.
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to be independent from ZFC + PD are meta-theoretic in some way.’® As we’ve
seen, our current set-theoretic concept lacks this feature for questions at the level
of third-order arithmetic and above (e.g. CH). It is this that will enable us to
avoid examples of the kind given earlier where we consider two different legitimate
concept extensions, since our informally rigorous concept should immediately tell
us that one or the other extension is illegitimate. Thus, if my conjecture that a high-
degree of theoretical completeness in combination with a categoricity proof is a
good-indication of informal rigour, and if we accept PD, and if we accept that we
do not have a high-degree of theoretical completeness with respect to set theory,
then this supports the idea that ZFC,pw is a good axiomatisation of our current
level of informal rigour, since those concepts for which we have a high-degree of
theoretical completeness can be determined up to isomorphism, and those which do
not cannot.

Of course, given the claim that theoretical completeness in combination with
categoricity likely yields informal rigour, our belief in informal rigour is defeasible.
It could be, for example, that we discover techniques that allow us to find non-meta-
theoretic sentences independent from our current theories of arithmetic and analysis.
Hamkins entertains this suggestion:

My long-term expectation is that technical developments will eventually arise that provide
a forcing analogue for arithmetic, allowing us to modify diverse models of arithmetic in
a fundamental and flexible way, just as we now modify models of set theory by forcing,
and this development will challenge our confidence in the uniqueness of the natural number
structure, just as set-theoretic forcing has challenged our confidence in a unique absolute
set-theoretic universe. (Hamkins, 2012, p. 428)

Perhaps then one thinks that my account goes too far: Surely we should not allow
arithmetic to fail to be informally rigorous in such a situation? And what of the
situation of the Predicative Iterabilist? Doesn’t the possibility of their situation show
that in fact our discourse involving the reals is not determinate?

38 See here Woodin (2001) and Welch (2014), for the point about PD implying a high degree
of theoretical completeness for H(w;). See Woodin (2017) and Steel (2005) respectively for the
point that Ultimate-L and PFA imply PD. Acceptance of PD is somewhat controversial, and not
universally agreed upon. Some (e.g. Barton and Friedman 2017, Barton 2020, and Antos et al.
2021) consider versions of the Inner Model Hypothesis (IMH), an axiom candidate relying on
extensions of the universe that implies that PD is false. An interesting fact, though one that
represents a slight digression (and so I don’t include it in the main body of the text) is that (i)
variants of this axiom can be coded in strong impredicative class theories (see here Antos et al.
2021) without referring to extensions (other than through coding), and (ii) some of these variants
imply that there are no inaccessible cardinals in V. A sufficiently strong version of ZFC, with one
of these axioms added would thus be fully (rather than quasi) categorical axiomatisation. The IMH
unfortunately does not touch CH (and so we could still construct the same MDA-style argument),
however there are variations of the IMH (e.g. the Strong Inner Model Hypothesis SIMH) that imply
that CH fails badly. Despite these complications, there is a large community of set theorists that do
regard PD as well-justified (see Koellner 2014 for a summary) and so I set this point aside for the
purposes of this paper.
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I am quite happy to bite this bullet. If a technique along Hamkins’ lines were
to be found, I would accept that, after all, our thought concerning arithmetic is not
determinate on the basis of the MDA. Given my current evidence however, I find this
overwhelmingly unlikely; all such evidence (categoricity, theoretical completeness)
seems to indicate that we are informally rigorous, and thus I find it likely that no
such technique will be forthcoming.

Even if no such technique concerning the natural numbers is forthcoming, one
might object to the idea that our talk concerning the reals is determinate. Recall the
case of the Predicative Iterabilist, there we noted that there were different legitimate
expansions of arithmetic to form the classical and intuitionistic continuum. Doesn’t
this (on the basis of the MDA) undermine my claim that our concept of real number
is indeterminate (and hence ZFCyow is undermined)?59

I do not find this objection convincing (assuming that we accept Projective
Determinacy). Given an utterance of some sentence of the form “the continuum
is such that ¢ we might:

(a) Implicitly have either the classical or intuitionistic (or maybe even infinitesimal)
continuum in mind.

(b) Be using “the continuum” as an algebraic concept to refer to different non-
isomorphic continua.

(c) Have a non-informally rigorous concept of continuum which admits of multiple
different inconsistent sharpenings.

If we are using “the continuum” in sense (b), then the objection fails to gain
traction, since we are only concerned here with informal rigour as it applies to
determination of particular structures using non-algebraic theories. The fact that
there are algebraic uses of the term “continuum” does not affect the fact that I can
be precise when talking about a specific continuum I have in mind in other contexts
when employing a different concept (e.g. the classical continuum).

Further, if we are in case (a) the objection also has no force. If, on a given
occasion of utterance, I am clear which specific continuum-concept I am employing
(say the classical continuum), then the fact that I can use the word “continuum” to
apply to other kinds of continua on different occasions is no more problematic than
the fact that I can use the word “pingiiino” to refer to a delicious chocolate/cream-
based snack as well as a kind of flightless bird.

For the objection to have any force, it must be that we are in case (c). Certainly it
is plausible that some agents might find themselves in this position, such as the early
analysts or even the average student in beginning a first course in analysis. However
as far as contemporary research-level mathematics goes, I think there are some
reasons to think that we are not in this position concerning the classical continuum.
This is because (as mentioned) earlier, if we accept PD (which is agreed on by
both proponents of Ultimate-L and forcing axioms) then are no known sentences
for which a MDA-style argument could work. Of course, if our confidence in PD

391 thank Geoffrey Hellman for pressing this objection.
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were to be challenged (for example by the emergence of a foundational programme
rejecting it%) then I would be happy to retreat and accept that ZFC,y should
underwrite our axiomatisation of informal rigour (possibly extended to ensure the
well-foundedness of the intended structures). In the other direction, it may turn out
in fact that there are agents who are already informally rigorous using ZFC;. For
example, if we suppose that Ultimate-L comes to be accepted in the next 10 years
on the basis of the arguments currently advanced for it, we may wish to conclude
that those that currently accept the axiom on these grounds already have a theory
of sets with a high-degree of theoretical completeness. For now, I remain agnostic
regarding current foundational programmes in the philosophy of set theory, and so
find MDA-style arguments at least somewhat convincing.

Objection Mathematics is necessary! It is very natural at this point to make
the following objection: I have claimed that our concept of set is currently not
informally rigorous and fails to determine a truth-value for CH. However I’ve also
left open the possibility that in the future we might have an informally rigorous
concept of set that determines CH. Moreover, I think that the Axiom of Foundation
was not determinate for Mirimanoff’s discourse about sets, whereas it is true given
our concept of set. But don’t I think then that mathematical truth can vary? Doesn’t
this contradict the widely held assumption that mathematical truth is necessary?
My answer: Yes and no. We can have similar discourses using terms like “set”
that are interpreted in very different ways at different times. However once the
underlying concept of a discipline is fixed, the truths about that concept at that
time are necessary. The only way that truth involving the discourse can vary is
by the underlying concepts changing somehow.®! So if by “mathematical truth is
necessary” we mean “all truths about every mathematical discourse are fixed” then
mathematical truth is not necessary, however if we mean “what is true of particular
concepts at particular times is fixed” then mathematical truth is necessary.

A comparison case is useful here. Sheldon Smith (2015) argues (convincingly, in
my opinion) that Newton’s thought involving the concept derivative could have been
sharpened into several precise non-extensionally-equivalent concepts. Two such are
the contemporary conception of standard derivative, and the symmetric derivative.
For the purposes of our discussion it isn’t terribly important how these are defined,
but they are not extensionally equivalent (for example, if we consider the absolute
value function f(x) = |x|, the standard derivative is undefined at the origin, whereas
it is the constant O function (i.e. the x-axis) for the symmetric derivative). Let
us suppose (as Smith argues) that Newton’s concept derivativeNeV'" admitted of
sharpenings to our concepts standard derivative and symmetric derivative. Then
we should hold that Newton’s discourse about the derivative of functions did not

%0 The Hyperuniverse Programme, which motivates the Inner Model Hypothesis, is plausibly one
such programme.

6! This idea has much in common with the discussion in Ferreirés (2016) of the idea of invention
cum discovery.
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determine a truth value for the sentence “The derivative of the absolute value
function at the origin is the constant O function”. However, that sentence from our
discourse is naturally interpreted (in most contexts) as false, since the concept to
be employed (without further specification) for us is standard derivative, and the
absolute value function has no derivative at the origin for the standard derivative.5>
But we should not think that such an example seriously threatens the idea that
mathematical truth is necessary, since the underlying concepts have changed in some
way.5?

Objection First-order schemas and second-order interpretations. A key part of
Kreisel’s 1967 paper is the idea that our commitment to first-order schemas is
dependent upon the relevant second-order formulations (e.g. Replacement):

A moment’s reflection shows that the evidence of the first order axiom schema® derives
from the second order schema: the difference is that when one puts down the first order
schema one is supposed to have convinced oneself that the specific formulae used (in par-
ticular, the logical operations) are well defined in any structure that one considers. . . (Kreisel
1967, p. 148.)

His idea is that the informal rigour about the second-order concept is precisely
what motivates the first-order schema. Since we are precise about the relevant
particular structure, we can see that the first-order schema is always true on this
structure, and this is what justifies the principle. Given this claim, and the fact that I
have advocated an indeterminacy in the second-order quantifiers in certain contexts,
does this undercut the motivation for the first-order schema of Replacement in terms
of its second-order formulations?

Kreisel’s point is controversial, but even if we accept the idea my response
is quick: No. This is because the motivation for the first-order schema could
be interpreted as follows: Given any particular interpretation of the second-order
variables (a notion which here I’m taking to be indeterminate) the first-order schema
is true. I do not need to be precise about the interpretation of the second-order
variables in order to say that however I interpret them, the instances of the first-
order schema hold (this is itself a schematic claim). Kreisel seems to be assuming
here that an acceptance of meaningful impredicative second-order theories entails
a commitment to determinacy in how the quantifiers are interpreted, but this is a

62 Thanks here to Zeynep Soysal for suggesting that the concept of derivative might be a pertinent
comparison case. See Smith (2015) for the details. That paper also contains several interesting
remarks about how we might think conceptual indeterminacy and optimal theories relate in this
context, critically examining Rey (1998)’s suggestion that we can implicitly think with a particular
concept in virtue of deference to an optimal theory.

63 Whether or not they are the same concept is a question we leave open and will mention in the
conclusion.

04 Here, Kreisel is in fact talking about induction schema in PA, but the point transfers to
Replacement.
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mistake, one can perfectly well accept impredicative second-order theories whilst
denying that they have determinate interpretation.®

Objection You've used notions that are dependent upon a definite concept of set
in characterising the debate. A further question is the following: Often I have
used phrases like “range of the second-order variables” or “isomorphism” that are
naturally interpreted as involving essentially higher-order concepts. But, by my own
lights, these notions are indeterminate (for example, I can make two unstructured
sets A and B such that |A| < |B| isomorphic by collapsing | B| to |A|). How is this
legitimate given that I take our talk about sets to be indeterminate?

There are a two points to make here:

First, I do take myself to be informally rigorous about a good deal of mathematics
(for the purposes of this paper anyway). I think it is likely that we, as a community,
are informally rigorous about the real numbers and natural numbers, and the concept
of well-foundedness. Thus, my view does not collapse into an ‘anything goes’
relativism.

Second, we can think of this paper as a modelling exercise concerning what we
might be able to say about our current thought in the future. I might begin by saying
“Suppose that we were informally rigorous about our concept set, what should we
then say about our current thought?” I then take myself to have fixed some particular
structure 2T about which I am informally rigorous and satisfies ZFC, (possibly
with a Henkin interpretation!) and analyse how the debate might be interpreted
relative to 91 (e.g. that from the perspective of this hypothetical fixed universe,% our
current thought would be best axiomatised by ZFC;pw). This will then resemble
how our intellectual descendants who are informally rigorous (should there be any)
might think of our thought, much as how we now look at Mirimanoff’s thought as
indeterminate.

6.7 Conclusions and Open Questions

In this paper, I’ve argued that there are various foundational programmes and
situations we might find ourselves in that support different levels of informal rigour
concerning our set-theoretic concepts and thought. In particular, I've suggested that
our level of informal rigour in set theory might be insufficient to convince us that
our discourse and concepts determine a particular set-theoretic structure. Instead,
perhaps we should admit some structural relativity into our characterisations of
structures, and a logic weaker than second-order is appropriate for characterising

65 This point has been made increasingly vivid by the recent boom in the study of different class-
theoretic systems.

66 There are options here for how we might interpret this reference. It might be interpreted as
picking out a specific such 9t (as outlined in Breckenridge and Magidor 2012) or an ‘arbitrary’
such 9 in the style of Fine and Tennant (1983). See Horsten (2019) for a recent treatment.
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our current thought about sets (in particular ZFC,ow). I've also argued, however,
that there is pressure on us to develop a more informally rigorous concept of set, and
thereby answer questions like CH. This identifies a fundamental distinction among
the general structures; we have structures that are unintentionally general (like the
structure corresponding to our discourse about sets) and those that are intentionally
general (like the group structure). This said, there are lots of questions left open by
the paper. I take this opportunity to raise some of the main ones.

Question. What is the status of the Modal Definiteness Assumption?

For most of the paper, I was happy to take the MDA as an assumption. I think
that given the kinds of possibilities described in the paper (Mirimanoff’s futures,
and our own) it’s a very plausible assumption. This said, I am pretty convinced that
both Kreisel and Isaacson would be unhappy with it (since it obviously implies their
position concerning the determinateness of CH is false), and I haven’t subjected it
to really intense philosophical scrutiny. This is worth examination.

A second question concerns the kinds of particular structures determined by our
set-theoretic discourse and concepts. Assuming that I am right that ZFCyow is
the right axiomatisation of our current discourse concerning set theory, there is the
question of what is determined on this basis. By and large this theory has not (to my
knowledge) been studied in detail.®’ There are some clear candidates for particular
structures that can be given categorical characterisations given an acceptance of
ZFCypw, we have already mentioned H(w;) and (R, 4, x, <). However, there
are others; the Shepherdson-Cohen minimal model for example can be given a
categorical axiomatisation, since we can capture absolutely the notion of well-
foundedness. The theory consisting of the following axioms:

(i) ZFC-Foundation
(i) The Axiom of Foundation formulated as the sentence (in quasi-weak second-
order logic) that there are no infinite descending €-chains.

(i) V=L

(iv) —3AMM“MN is a transitive model of ZFC”

identifies a unique model up to isomorphism, since the Shepherdson-Cohen minimal
model is (assuming that there is a transitive model of ZFC) the unique transitive
model of ZFC satisfying V = L and containing no transitive models of ZFC.
An anonymous reviewer helpfully points out that for other countable structures
what can be determined up to isomorphism may depend on ambient facts about
independence. For example, if we allow non-recursive axiomatisations, a result
of Victor Marek states that if there is a projective well-ordering of the reals (e.g.
under V = L) then every countable structure is categorical in second-order logic,
and hence also categorical in ZFC,pw (since on countable structures quasi-weak

%7 Much of what I've considered here was gleaned from Shapiro (1991, 2001). A recent
contribution that briefly considers some other versions of ZFC with different underlying logics
is Kennedy et al. (2021) (esp. §8: Semantic Extensions of ZFC).
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second-order logic coincides with full second-order logic). However, this result is
independent of ZFC; it is consistent with ZFC that there are countable ordinals
whose second-order theory is not categorical.®® We therefore ask:

Question. What other structures (both set-theoretic and non-set-theoretic) are particular,
given that we accept that our thought is axiomatised by ZFC;¢, and how can we provide
a bottom-up characterisation for them?

Closely related is whether or not the only unintentionally general structures we
talk about are set-theoretic. For all I've said, it might just be set theory that exhibits
this feature. We might then ask:

Question. Are there other interesting unintentionally general structures apart from set-
theoretic ones?

Throughout the paper, I talked of concepts changing, for example in the shift
from Mirimanoff’s concept to our own, from Newton’s concept of derivative, and
from our own concept of set to that of our intellectual descendants. An interesting
philosophical question is then in what sense there is a continuity of conceptual
content and thought between one intellectual generation and the next. We therefore
ask:

Question. When a concept is made more precise, what remains constant, and how should
we understand this continuity? Does the concept change or should we rather understand
this as a shift to a different concept? Given this, in what sense do we mean the same/similar
thing(s) by what we say with our mathematical utterances?%

We save the toughest question for last. Throughout, I've talked as though we
might one day be informally rigorous about our concept of set. However, this might
just not be possible. Perhaps any modification of the concept we suggest will be
susceptible to decisive objections. Perhaps the different possibilities for extending
our concept of set will all seem equally legitimate, and we simply cannot reasonably
pick any one concept, whatever the pressure from the quasi-categoricity theorem.”®
We therefore ask:

Question. Is it possible for us to legitimately develop an informally rigorous concept of set
(at least for each level of the hierarchy)?

68T am very grateful to an anonymous reviewer for explaining these facts and pointing me to the
discussion on Mathoverflow at Sdez (2011) and Schweber (2014), as well as the mentioned result
in Marek (1973).

9 T am grateful to Chris Scambler for proposing this question and some interesting discussion here.
Some possible directions of research (suggested to me by Fenner Tanswell and Juliette Kennedy)
include revisiting Lakatos (1976), and in particular development this idea using Waismann’s notion
of open texture and resources from conceptual engineering. This has been examined in the case
of the Church-Turing thesis by Shapiro (2013), but also in the philosophy of mathematics more
broadly in Tanswell (2018) and by Vecht (Forthcoming), with the former providing an application
to the universe/multiverse debate.

70 Considerations along these lines are considered in Hamkins (2012, 2015).
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Perhaps we can answer this question affirmatively, or perhaps we are doomed
to spend our days like a mathematical version of Buridan’s Ass, trapped between
equally (un)attractive options. Time will tell.
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Chapter 7 ®
Ontological Dependence and Grounding Qs
for a Weak Mathematical Structuralism

Silvia Bianchi

Abstract In the philosophy of science, Weak Structural Realism (WSR) offers
a promising priority-based strategy to avoid the main objection to eliminative
Ontic Structural Realism (OSR). On that view, quantum particles depend for
their identity on quantum entanglement structures but are defined as not entirely
structural thin physical objects. A similar approach can be applied to mathematical
structuralism, where Weak Mathematical Structuralism (WMS) provides a novel,
more moderate interpretation of ante rem structuralism. WMS is articulated in terms
of grounding: numbers are grounded for their identity in the abstract structure they
belong to. However, they are not completely reduced to their structural features and
are re-conceptualized as thin mathematical objects, endowed with both structural
and non-structural properties. The introduction of such objects in the structural
ontology allows to escape some typical objections to ante rem structuralism without
abandoning the priority of structures.

Keywords Scientific structuralism - Mathematical structuralism - Ontological
dependence - Metaphysical grounding - Thin objects - Individuation

7.1 Introduction

Ontic Structural Realism aims at providing the best interpretation of scientific
realism, according to which ‘there are no things and structure is all there is’
(Ladyman and Ross 2007) — or, at least, all there is fundamentally. This view has
interesting connections with Shapiro’s ante rem structuralism in the philosophy
of mathematics, which assumes a background ontology of abstract structures and
reduces mathematical objects to mere positions/empty places in these structures.
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Both accounts share an entirely structural conception of objects, which raises
related issues in scientific and mathematical structuralism: scientific OSR is subject
to ‘the relation without relata’ objection, dealing with the nature of quantum
particles in quantum entanglement structures. Mathematical ante rem structuralism
meets with the ‘problem of objects’ and the ‘problem of identity’ concerning the
individuation of numbers in abstract structures.

The core idea is to resist these objections by reconsidering the relationship
between objects and structures in terms of ontological dependence and metaphysical
grounding (objects are dependent on/grounded in the relevant structures); these
notions display some features which naturally support a non-eliminative stance
towards objects, in which they are given a more substantial role. In the philosophy of
science, weaker forms of structuralism (Esfeld 2004; Wolff 2012) have been already
introduced as alternatives to OSR. I will specifically refer to their formulation
in terms of Lowe’s (1994, 2016) identity dependence, which allows to introduce
thin physical objects in the structural ontology. Such objects — albeit secondary
to structures — are not entirely reducible to their structural features and suggest a
possible response to the relation without relata objection affecting OSR.

My main purpose is to consider the theoretical advantages of a weak approach
also in the mathematical framework, where it has not been explicitly proposed. In
analogy with the philosophy of science, I will elaborate Weak Mathematical Struc-
turalism (WMS) as a more moderate interpretation of Shapiro’s non-eliminative
ante rem structuralism. WMS is considerably based on Linnebo’s (2008) and
Wigglesworth’s (2018) proposals, which appeal to the notions of identity depen-
dence and metaphysical grounding. The stricter connection between grounding
and metaphysical explanation makes grounding particularly suitable to express
non-eliminative structuralism and, specifically, WMS. Moreover, grounding fits
well with the prospects of applying a non-eliminative approach to both objects
and structures; on the one hand, numbers are defined as not-entirely structural
thin mathematical objects, comparable with thin physical objects. On that view, a
possible response to the main difficulties of Shapiro’s ante rem structuralism is put
forward. On the other hand, the priority of structures is preserved, consistently with
ante rem structuralism.

The present paper is structured as follows: the first part deals with scientific
structuralism; first of all, I will present Ontic Structural Realism and its main
objection (Sect. 7.2). In Sect. 7.3, I will illustrate French’s taxonomy of OSR-
positions in terms of dependence, showing how this notion favors Weak Structural
Realism (WSR) as opposed to eliminative OSR and Moderate Structural Realism
(MSR). On this basis, a more detailed characterization of WSR and thin physical
objects will be advanced as a possible way of escaping OSR’s objection (Sect. 7.4).

The second part of the discussion concerns mathematical structuralism. In Sect.
7.5, Shapiro’s ante rem structuralism and its main difficulties will be illustrated;
I will then take into account the formulations of Shapiro’s account in terms of
dependence (Linnebo 2008) and grounding (Wigglesworth 2018) (Sect. 7.6). By
focusing on grounding, I will develop my own account of Weak Mathematical
Structuralism (WMS) and thin mathematical objects, which avoid the ‘problem of
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identity’ and the ‘problem of objects’ of ante rem structuralism without abandoning
an ante rem individuation of structures (Sect. 7.7).

7.2 Ontic Structural Realism (OSR) and the ‘Relation
Without relata Objection’

Ontic Structural Realism (OSR) claims to offer the best metaphysical interpretation
of our contemporary physics (concerned with quantum particles and the quantum
entanglement structures they are in) and comprises a family of views; on its
broadest interpretation, it is committed to the fundamentality of structures and their
priority to objects. This means that «the fundamental ontology of the world is one
of structures and that objects, as commonly conceived, are at best derivative, as
worst eliminable». (French 2014, p. v). Different attempts to make the priority
and the fundamentality claims more precise have been proposed. Among them,
Eliminative OSR (French and Ladyman 2003; Ladyman and Ross 2007; French
2010) replaces the object-oriented metaphysics of the received view — which is
not vindicated by our present understanding of Quantum Mechanics (QM) — with
a picture in which objects are eliminated fout court. In slogan form, «there are
no things, and structure is all there is» (Ladyman and Ross 2007, p. 131). This
metaphysical shift is motivated by a fundamental underdetermination concerning
the individuality of quantum particles in QM — consistent with two alternatives
metaphysical packages: quantum particles as individuals and as not individuals.!
The original OSR’s contributions are intended to break such underdetermination by
introducing a third way, in which the concept of object itself is undermined and
quantum particles are reconceptualized in purely structural terms. Metaphysically
speaking, this yields the result that all that matters about quantum particles are their
structural properties.

Eliminative OSR appears seriously controversial and subject to the relation
without relata objection (Cao 2003; Dorato 2000; Psillos 2001, 2006; Busch 2003;
Morganti 2004; Chakravartty 1998, 2003), which questions how we can have a
structure without the individuals making up this structure. In Chackravartty’s (1998,
p- 399) words «one cannot intelligibly subscribe to the reality of relations unless one
is also committed to the fact that some things are related». Eliminativists endeav-
oured in making sense of the ‘relations without relata’ intuition by interpreting
structures as universals (Stein 1989; Psillos 2006) or arguing that the relata of the
relations turn out to be structures themselves (Ladyman and Ross 2007; Saunders
2003).

Either way, such proposals are largely contentious, leaving room to the more
defensible non-eliminative OSR, which includes objects in the structural ontology.
The non-eliminative approach comes into a variety of forms; some of them

! Cf. French and Krause (2006).
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preserve the priority of structures and understand objects as secondary to them
(priority-based strategies) whereas others posit objects and structures on the same
fundamental level (parity-based strategies). Along the lines of French (2010), I
will focus on Moderate Structural Realism (MSR) and Weak Structural Realism
(WSR) as the most full-fledged examples, which can be accounted for in terms of
ontological dependence.

7.3 OSR and Dependence

In scientific structuralism, a more fine-grained analysis of the relation between
objects and structures remains to be accomplished. According to French (2010,
p- 98) «there is a lack of clarity regarding the relationship between objects and
structures, and it is also one that effects a separation between the eliminativist and
non-eliminativist forms of ontic structural realism».

Ontological dependence seems to adequately fill this gap, by cashing out
the priority and the fundamentality claims at hand in OSR. Broadly speaking,
ontological dependence is a metaphysical and explicative notion which conveys a
distinctively non-causal priority relation among entities; in particular, an entity is
said to be dependent on another entity either for its existence or for its identity.

Significantly, different forms of dependence elucidate different forms of OSR,
providing a taxonomy in which eliminative (OSR), Moderate Structural Realism
(MSR) and Weak Structural Realism (WSR) are distinguished.2

First, French (2010, p. 106) outlines eliminative OSR as follows:

1. OSR: the very constitution (or essence) of the putative objects is dependent on
the relations of the structures.

This intuition is clarified by Fine’s (1995) essential-existential account of
dependence (EDE):

x depends g for its existence upon y = gy it is part of the essence of x that x exists
only if y exists.

In eliminative OSR objects are radically reduced to their structural features: they
solely exist if the relevant structure exists and there is nothing to them (identity,
constitution, etc.) which can be defined independently of the structure. After all,
objects are not genuine relata of the dependence relation under scrutiny and it is
questionable whether a dependence relation applies at all.

Second, Moderate Structural Realism (MSR) introduces a mutual relation of
dependence between objects and structures, that are ontologically on a par. As
explained by French (2010, p. 104):

2 French specifically refers to Tahko and Lowe’s (2016) analysis of dependence, in which different
accounts are illustrated.
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2. MSR: the identity of the objects/nodes is (symmetrically) dependent on that of
the relations of the structure and viceversa.

This conception is expressed by the modal-existential account of dependence
(EDR), which allows for symmetrical relations’ and is laid out by Lowe (2005) as
follows:

x depends R for its existence upon y = g4 necessarily, x exists only if y exists.

Moderate Structural Realism (Esfeld and Lam 2008) states that both objects
and structures are ontologically fundamental entities — the ontological priority of
structures is reformulated in terms of a ‘parity claim’, where objects and structures
are on the same ontological footing.*

Neither objects nor relations (structure) have an ontological priority with respect to the

physical world: they are both on the same footing, belonging both to the ontological ground
floor. (Esfeld and Lam 2008, p. 31).

Third, WSR understands the relation between objects and structures asymmet-
rically (objects are admitted in the ontology, though as less fundamental than the
structures they belong to) and focuses on the notion of identity. French describes
WSR as follows (p. 105):

3. The identity of the putative objects/nodes is (asymmetrically) dependent on that
of the relations of the structure.

According to French, the asymmetrical notion of dependence at play is ade-
quately captured by Lowe’s (1994, 2016) identity dependence (ID):

x depends for its identity upon y = 4¢ there is a two-place predicate “F” such that it
is part of the essence of x that x is related by F to y.

In scientific structuralism, WSR preserves the priority of structures and is related
to the idea of a contextual identity for quantum particles, derivative on the relations
in which they stand (Stachel 2002; Ladyman 2007) and sufficient to support a
thin notion of objects. The idea of thin objects has been originally elaborated
by Saunders (2003) in terms of a weaker form of the Principle of Identity of
Indiscernibles (PII) and a weak notion of discernibility for quantum particles. Such
proposal is based on Quine’s (1960, p. 230) distinction between different grades of
discernibility, consisting of absolute, relative and weak discernibility. Two objects
are absolutely discernible if there is a one-variable formula which is true of an
object and not of another; relatively discernible if there is a two free-variables
formula which applies to them just in one order; weakly discernible if there is a
symmetrical but irreflexive relation holding between them. Let us now come back

3 Tahko and Lowe (2016, sec. 2.1.) consider as an example the relation between Socrates and its
life, which are said to be dependent on each other.

4 Such view is generally supported by a relational interpretation of properties and by a discussion
of quantum entanglement in terms of non-separability.
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to quantum particles’ relevant case, and consider two electrons in a singlet-state
having an opposite spin: while the two particles cannot be either absolutely or
relatively discernible (they are indistinguishable in isolation, since their permutation
leaves the state they are in unchanged) they are weakly discernible in virtue of the
irreflexive relation holding between them (i.e. having opposite direction of each
component of spin to...). This proposal turns out to be partially controversial in
the structuralist literature, since structures, in order to individuate the relata, seem
to presuppose their numerical diversity, and then cannot account for it.> However,
other interpretations of thin objects, focused on a more accurate analysis of the
notion of dependence at play, are available to WSR (Sect. 7.4.)

Before moving on, a reflection on ontological dependence itself allows to
evaluate the tenability of each form of OSR. Wolff (2012, p. 608) discusses the
role of ontological dependence in scientific structuralism and argues that «only
certain forms of structural realism can be articulated using ontological dependence».
Significantly, ontological dependence cannot serve the purpose of accounting for an
eliminative interpretation of the relation between objects and structures. Ontological
dependence, in fact, is not an eliminative relation and requires that both the relata of
the relation (objects and structures) should exist. To say that B ontologically depends
on A means that A is prior to B, which is less fundamental than A; but this does not
mean that B is to be eliminated . By these means, ontological dependence provides
further reasons to reject eliminative OSR (1) and favors non-eliminative views, thus
leaving us with options (2) and (3).

Moderate Structural Realism (2) includes objects in the ontology, but is open
to criticisms with respect to the symmetry of the notion of dependence at hand.
Such assumption is in contrast with the standardly ‘layered” metaphysical picture of
reality (in which entities come into different levels of fundamentality) and is subject
to the typical objections concerning circular explanations.®

Hence, Weak Structural Realism (3), as captured by Lowe’s (asymmetrical) iden-
tity dependence (ID), appears to be the most compelling, priority-based alternative
to eliminative OSR:

Of the three versions of ontic structural realism discussed at the beginning [the three forms
recognized by French 2010, Ed.] only thin-object OSR comes close to being articulated
using essential dependence as the relation between objects and structure» (Wolff 2012, p.
622).

In the next section, I will more specifically define this account and propose a
different interpretation of the underlying conception of thin objects, which suggests
a plausible response to OSR’s relation without relata objection.

5> Analogous considerations apply to the mathematical framework and meet with similar difficulties
(cf. sec. 5).

6 Lowe (2012) raises a more specific objection, according to which a coherent structuralist ontology
should include at least some self-individuating entities.
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7.4 Weak Structural Realism (WSR) and Quantum Particles
as Thin Physical Objects

From the previous discussion, WSR has emerged as the most defensible form of
OSR. However, a more precise definition of thin objects, as presupposed by WSR,
stands in need of further clarification.

As above, Saunders’s (2003) defines thin objects by referring to the Quinean
distinction among different grades of discernibility; however, such characterization
proves to be troublesome in the scientific domain. My intention is to explore an
alternative conception of thin objects, which is arguably immune from the objections
to Saunders’ (2002) proposal.

To do so, let us rehearse the core assumption of WSR:

1. The identity of the putative objects/nodes is (asymmetrically) dependent (ID) on
that of the relations of the structure.

Providing that the notion of dependence at hand is understood in a non-
eliminative way, consistently with considerations put forward in Sect. 7.3, this claim
per se motivates the introduction of thin objects in the ontology, without necessarily
appealing to symmetrical and irreflexive relations holding between them.

Esfeld (2004) and Wolff (2012) provide further reasons to articulate a notion of
thin objects in these terms, relying on ontological dependence and a more precise
investigation of the structural and non-structural properties of quantum particles.
Esfeld (2004, p. 613) argues for a non-eliminative metaphysics of relations for
quantum particles as follows:

relations require things that stand in the relations (although these things do not have to be
individuals and they need not have intrinsic properties).

This idea allows interpreting physical theories as referring to entities that may
exist independently of the relations in which they stand. To be an entity is to be
the subject of a predication of properties. This is not equivalent to be an individual,
for which further requirements need to be fulfilled (having an intrinsic identity or
a ‘primitive thisness’). This distinction echoes the traditional opposition between
entities on the one hand, and (individual) objects on the other hand, which qualify
as ‘properly individuated entities’.” On this view, is not implausible to consider
entities which are not individuals. In WSR, quantum particles in entanglement
states are clearly not individual objects in a proper sense, since their identity is
entirely determined by the whole entanglement system they are in — as the relation of
dependence (ID) at play shows. However, as pointed out by Esfeld (2004), relations
presuppose objects of some sort, i.e. not individuated entities or, more specifically,
thin objects.

If the identity of thin objects is given by the structure, what does their existence —
conceivable independently of the structure — exactly amount to? I submit the

7 Cf. Keriinen (2001, p. 313)
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existence of thin objects as not reduced to their essential structural properties, since
it also results in their non-structural properties. In scientific structuralism, structural
properties of quantum particles (state-dependent properties such as position and
momentum) are generally described as those properties which remain invariant
under symmetry groups transformations in group theory.?

As specified by Ladyman (2020, sec. 4.1.):

We have various representations of some physical structure which may be transformed or
translated into one another, and then we have an invariant state under such transformations
which represents the objective state of affairs.

However, this definition admits counter-examples, consisting of the state-
independent/non-structural properties of quantum particles. Wolff (2012, p. 623)
refers to kind properties (such as charge, spin, mass), which qualify particles as
electrons, muons, etc. and are not easily reducible to a structural, group-theoretic
interpretation:”

Particles qua individuals are thin objects. To the extent that we understand their identity as
individuals, we understand it in terms of the state they are in. This leaves unaffected their
‘kind identity’, that is, their identity as electrons rather than muons. Which kind of particles
they are does not depend on any particular state the particles are in.

Some clarifications concerning kind properties are needed, since they play a
crucial role in the present discussion. First, non-structural kind properties do not
correspond to intrinsic properties, defined as the «properties that are independent of
whether the object is alone or accompanied by other objects» (Esfeld and Lam 2011,
p. 144):19 in fact, kind properties do not fix the identity of objects as individuals, but
as ‘packaged’ into kinds (given by determinate correlations of mass, spin, charge).
Second, properties such as mass and spin are essential properties of quantum
particles. This may constitute a possible objection to WSR (and, plausibly, to any
form of OSR, in which essential properties are generally understood as structural
properties). However, there is a sense in which kind properties are secondary
to structural properties. Kind properties distinguish electrons, muons, etc. but,
assuming two electrons in a singlet-state, they leave underdetermined which one is
which. It follows that quantum particles are indistinguishable in a much stronger
sense, and that solely the structure fixes their very identity — what they are as
opposed to all the other objects in the same structure.

8 Symmetry groups transformations are specifically presupposed by Quantum Field Theory (QFT)
and represent the mathematical counter-part of quantum entanglement states. This interpretation
traces back to Cassirer, Born, Weyl and Eddington.

9 Several attempts to apply this reduction have been performed (cf. Wigner’s, 1939, original
characterization of properties; more recently, Castellani 1998). However, these structuralist
strategies proved to be largely unsuccessful.

10°8till, this is controversial; for a discussion about kind properties and intrinsic properties see
McKenzie (forthcoming).
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Fig. 7.1 Two quantum

particles in a singlet-state ‘ ‘

On this basis, let us define thin physical objects by referring to the conjunction
of the following conditions, focusing on the identity and the existence of quantum
particles respectively.

1.a) Thin objects [Identity]: thin objects are entities whose identity entirely depends
upon the relevant structure.

2.a) Thin objects [Existence]: thin objects are entities whose existence (resulting
in both structural and non-structural kind properties) is necessary to posit
relations themselves.

The permutation of quantum particles in a single state provide us with a more
specific example, which sheds light on definitions 1.a and 2.a (Fig. 7.1):

Quantum particles are indistinguishable in isolation: they can be permuted
while leaving the relevant state unchanged. Therefore, solely quantum entangle-
ment structure grounds their identity as individuals (definition 1.a). Nevertheless,
relations of quantum entanglement require things to stand in the relations: as a
consequence, the relevant particles cannot collapse in a single one, because they
also possess state-independent kind properties that allow them to be considered
numerically distinguished relata; in fact, even though non-structural properties
cannot distinguish particles of the same kind, they are able to distinguish particles
that belong to different kinds, e.g. electrons, muons, etc. (definition 2.a).

Still, thin objects so understood raise two main worries:

(i) are thin physical objects substantial enough to avoid resulting in a ‘no-objects-
at-all’ position?
(ii) are thin physical objects weak enough to preserve a structuralist framework?

First, as opposed to eliminative OSR, a (weak) notion of object is re-established:
thin objects are not entirely reduced to their structural features, since they are
endowed with both structural and non-structural kind properties. Such properties
define them — if not as individuals — as entities which are conceivable independently
of the structures and exist metaphysically prior to them.

On these grounds, thin objects are substantial enough to be admitted as legitimate
relata of the structural relations, in accordance with the idea that relations need
some things to be related (the first i. condition is satisfied). This suggests a plausible
response to the ‘relation without relata’ objection affecting OSR.

Second, consistently with OSR, quantum particles do not possess intrinsic
properties, which would commit to the object-oriented metaphysics that scientific
structuralism wants to contrast. In fact, it is widely held in QM formalism that
quantum particles — when entangled — lack any quantum pure state, which is
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exhibited just by the whole entangled system. In such cases, quantum particles
are devoid of any properties that may characterize them individually, or of any
«properties that are independent of whether the object is alone or accompanied
by other objects» (Esfeld and Lam 2011). However, this is not always the case; at
least on some interpretations of QM (i.e Copenhagen-type interpretations) quantum
particles are not necessarily in entanglement states, and then display a pure state in
isolation. So, it is worth emphasizing that the ‘thinnes’ of quantum particles entails a
specific two-place relation, involving a particle and a time. Taking into account these
two possibilities (quantum particles as entangled/non-entangled), I focus on the
more standard situation described by WSR, in which quantum particles are in fact
entangled and then depend on the structure for their identity. This makes quantum
particles secondary to the structures (thin objects are weak enough, thus responding
to ii.) and reinforces the priority of structures, as required by the asymmetry of
WSR.

To sum up, such objects appear to be something more than the ‘no-object at
all’ (whatever thick or thin) the eliminative versions of OSR are committed to,
but something less than the ‘thicker’ objects in opposition of which OSR has been
originally introduced.

Let us move to mathematical structuralism and the analysis of ante rem struc-
turalism, where very similar issues arise.

7.5 Shapiro’s ante rem Structuralism: The ‘Problem
of Objects’ and the ‘Problem of Identity’

The theoretical core of mathematical structuralism can be adequately introduced by
considering the following quotation from Hellman and Shapiro (2019, p.1):
The theme of structuralism is that what matters to a mathematical theory is not the internal

nature of its objects — numbers, functions, functionals, points, regions, sets, etc. — but how
these objects relate to each other.

In what follows, I will focus on the interpretation of this assumption according
to Shapiro’s (1997) ante rem structuralism, which is strictly connected with the
discussion of OSR in the philosophy of science.

Shapiro’s ante rem structuralism aims at introducing a structuralist position
which combines realism in ontology (mathematical entities exist) and realism
in semantics (mathematical statements have not-vacuous truth values) with an
acceptable epistemology, thus responding to the so-called Benacerraf’s dilemma
(1973) — according to which the semantic and the epistemological desiderata are
inconsistent in realism and anti-realism about objects.!! The task of reconciling the

11 0n the one hand, ontological realism embraces a convincing semantics, whereby mathematical
statements are interpreted at face value. Still, the abstract nature of these objects — which makes
them not located in space and time and not causally effective — introduces serious epistemological
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epistemological and the semantical requirements is performed by providing a more
precise definition of mathematical structures and the positions within them.

The core of Shapiro’s (1997) view consists of the label ante rem that character-
izes this form of structuralism: structures exist independently of and prior to the
systems of numbers which exemplify them — similarly to scientific OSR, ante rem
structuralism is defined by the central role played by the notion of structure, that is
both fundamental and ontologically prior to objects.

The reference to background structures allows mathematical statements to be
interpreted at face value, since they do not generalize over all systems of objects but
exactly refer to the positions within a specific structure, i.e. the natural numbers
structure. This distinguishes ante rem structuralism (that is a form of realism,
or non-eliminativism about structures) from eliminative structuralism (Benacerraf
1965; Hellman 1989), in which mathematical statements are generalizations over
all systems of objects and the reference to both particular objects and the abstract
structure is eliminated.

In an ante rem framework, mathematical objects are treated as sui generis
entities, which are reduced to empty places or mere positions. This idea is captured
by Shapiro’s (1997) ‘places-as-objects’ perspective, in which (empty) places are
legitimate objects in themselves, denoted by singular terms with their own properties
and relations. Places as objects are completely determined for their identity by the
structure they belong to. According to Shapiro (p. 6) to say that the number 2 is
the second position in a particular progression (i.e the ante rem progression of the
numbers) suffices to characterize it as a completely determinate entity:

Roughly speaking, the essence of a natural number is the relations it has with other natural

numbers. There is no more to being the natural number 2 than being the successor of the
successor of 0, the predecessor of 3, the first prime, and so on.

For this reason, Shapiro’s account appears significantly comparable with scien-
tific OSR; on both accounts, all that matters about objects (i.e. quantum particles
and numbers) are their structural properties.'? As illustrated in Sect. 7.2, this
assumption has led to the ‘relation without relata objection’ in OSR; when it comes
to ante rem structuralism, the attempt of defining numbers in purely structural terms
results in two similar worries:

(a) ‘the problem of objects’: to which extent are positions in a structure legitimate
objects in themselves? In fact, places as objects appear to be too structurally
defined to avoid resulting in a position where there are no objects (or even
acceptable entities) at all.

problems. On the other hand, anti-realism about objects ensures a more straightforward episte-
mology but cannot account for a corresponding semantics, which would require objects to refer
to.

12 Shapiro (2006, 2008) has more recently developed a more moderate position about objects,
according to which they possess non-structural properties as well (the property of being abstract,
non-spatio-temporal, of not entering in any causal relation, etc., 2006, p. 116). Still, he has not
really developed a view that accounts for mathematical objects in these terms.
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(b) ‘the problem of identity’: on a structuralist conception of objects, structurally
indiscernible objects are to be numerically identified with each other, in contrast
with the mathematical practice.'?

Concerning the ‘problem of objects’, Parsons (2008, p. 107) has sustained
that «it is possible to have genuine reference to objects even if the ‘objects’ are
impoverished in the way in which elements of mathematical structures appear
to be».!* Hellman (2001) and MacBride (2006) have developed more specific
objections, intended to show an alleged circularity in the individuation of objects
in ante rem structuralism: even though the identity of objects depends upon the
relevant structures, structures presuppose relata having already been individuated
or numerically distinguished.

Let us now consider the ‘problem of identity’ (Burgess 1999; Kerinen 2001),
related to the debate on whether the Principle of Identity of Indiscernibles (PII) can
be maintained within the structuralist ontologies. This issue specifically emerges in
non-rigid structures that allow for non-trivial automorphisms.'> Such structures are
composed by distinct mathematical objects that — if interpreted as mere positions,
in accordance with Shapiro (1997) — turn out to be structurally indiscernible (for
instance, + 1 and —1 in the relative numbers structure and + i and —i in the complex
numbers structure).

Several solutions have been proposed in the literature; some of them treat identity
as a primitive notion (Button 2006; Ladyman and Leitgeb 2008; Shapiro 2008;
Ketland 2011; Menzel 2018), arguing that the identity and diversity of places in a
structure is accounted for by the structure itself. According to this solution, ante rem
structuralism is not compelled to accept some versions of PII and is consistent with
the mathematical practice, which sometimes concedes that indiscernible objects
may be distinct; so, it is a mathematical fact that + 1 and —1 are distinct, despite
being indistinguishable within the structure. Other strategies introduce weaker
forms of PII to deal with in a structuralist context; Ladyman (2005) — along the
lines of Saunders’(2003) proposal in scientific structuralism (Sect. 7.3) — claims
that numbers in structures with non-trivial automorphism are weakly discernible in
virtue of the irreflexive relations holding between them (for example, for + 1 and
—1 in the relative numbers structure, ‘to be the additive inverse of”). On that view,
one can state the non-identity of mathematical objects without violating PII (or, at
least, violating just the stronger versions of PII, which demand for an absolute or
relative discernibility of objects)

Either way, the existing proposals raise further issues, thus leaving room to other
solutions. In fact, the first strategy is not completely convincing, as the notion of
primitive identity is controversial in the structuralist literature. The second one
recalls the controversial notion of weak discernibility which, according to MacBride

13 See Leitgeb (2020, part B sec.1-3) for this useful distinction.
14 This worry has been introduced in Russell (1903), Benacerraf (1965) and Kitcher (1983).
15 Internal symmetries that are not identity mappings.
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(2006) does not actually face the objection (irreflexive relations still presuppose the
numerical diversity of objects).

In what follows, I will advocate an alternative two-step strategy to resist the
main objections to ante rem structuralism: first, I will make the relation between
objects and structure more precise, by referring to the formulations of ante rem
structuralism in terms of dependence (Linnebo 2008) and grounding (Wigglesworth
2018). Second, I will show that grounding is a better candidate to introduce Weak
Mathematical Structuralism (WMS) as a more moderate interpretation of Shapiro’s
account, in which both ‘the problem of objects’ and the ‘problem of identity’
are avoided. WMS is directly based on Weak Structural Realism (WSR) in the
philosophy of science and its solution to the ‘relation without relata’ objection in
OSR.

7.6 Dependence and Grounding in ante rem Structuralism

As in scientific structuralism, the relation between objects and structures in mathe-
matical structuralism stands in need of further clarification. Ontological dependence
and metaphysical grounding accomplish this task, by expressing the fundamentality
and the priority claims at hand in ante rem structuralism. These notions play a
twofold role: first, they spell out the distinction between mathematical platonism
and ante rem structuralism — after all, both positions refer to abstract objects
embedded in larger structures, but just the second deems objects less fundamental
than structures. Second, ontological dependence and grounding can be seen as
non-eliminative relations that — for their very metaphysical features — assume the
existence of both structures and objects. The reasons for interpreting ontological
dependence as a non-eliminative notion have been clarified by Wolff (2012) in the
context of WSR (cf. Sect. 7.4). Like ontological dependence, grounding is typically
taken to be a non-eliminative notion, in which both the relata of the relation (that,
in structuralist claims, are assumed to be objects and structures respectively) should
exist: to say that A is grounded in B means than A obtains because of B, and not
that is to be eliminated. This motivates the idea that grounded facts do not reduce to
the facts grounding them: '
[...]grounded facts and ungrounded facts are equally real, and grounded facts are an

“addition of being” over and above the facts in which they are grounded’ (Audi 2012, pp.
101-102).

16 This means to reject the grounding-reduction link formulated by Rosen (2010), according to
which if p reduces to g, then g grounds p: assuming grounding as a reductive notion would commit
to an identity relation between the two facts — and not just to the claim that the grounded facts are
less fundamental than or ontologically secondary to the groundees grounding them, which is the
view here proposed.
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Let us then evaluate how each notion works when applied to ante rem structural-
ism.

Linnebo (2008) refers to Lowe’s (1994, 2016) identity dependence (ID) and
introduces two different dependence claims:'’

1. ODO (Objects Depend on Objects): each object depends for its identity upon all
the other objects in the same structure.

2. ODS (Objects Depend on Structures): each object depends for its identity on the
structure it belongs to.

These claims lead to a compromise view according to which certain mathemat-
ical objects depend on structures (e.g. abstract offices of the algebraic structures)'®
but not others (e.g. sets). Moreover, Linnebo (p. 78) distinguishes between a strong
and a weak sense of dependence:

strong dependence: «x strongly depends on y just in case any individuation of x must
proceed via y».

In accordance with Lowe (2003), ‘individuation’ means the explanation of the
identity of an object. Applied to sets, strong dependence entails that in order to
individuate a set, its elements must be specified — it is impossible to individuate a
set (e.g. the singleton of Socrates) without proceeding via the individuation of its
elements (e.g. Socrates himself). The reference to Lowe’s (1994, 2016) (ID) makes
strong dependence more precise:

Since it is essential to the singleton of Socrates that it is the value of the singleton function

applied to Socrates as argument, this singleton depends on Socrates. But since it is not

essential to Socrates that he is the value of the sole-element-of function applied to the

singleton as argument, there is no dependency in the reverse direction. (Linnebo 2008,

ibid.).

However, there is another, ‘weak’ sense of dependence which, according to
Linnebo (2008, ibid.), «has received little or no attention» in the literature:

weak dependence: «x weakly depends on y just in case any individuation of x must
make use of entities which also individuate y».

For example, a set weakly depends upon its subsets; this is because it strongly
depends on its elements, which also suffice to individuate the set’s subsets.

Significantly, sets (which provide a counterexample to the dependence claim) do
not even weakly depend upon their hierarchical structure of sets, whereas abstract

17 Both claims are implicitly presupposed by Shapiro (2000, p. 253): «the number 2 is no more and
no less than the second position in the natural number structure; and 6 is the sixth position. Neither
of them has any independence from the structure in which they are positions, and as positions in
this structure, neither number is independent of the other».

18 Linnebo refers to ‘abstract offices’ in algebraic structures as places in structures obtained by
a process of Dedekind abstraction, mapping a system to its abstract structure. While in a system
offices can be filled by different sorts of occupants, the corresponding abstract structure «is left
with nothing but the offices themselves» (Linnebo 2008, p. 75).
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offices (to which dependence applies) depend only weakly upon algebraic structures.
In particular, the individuation of an abstract office proceeds via (i.e. strongly
depends upon) an ordered pair (R, x), where R is a system that realizes a structure
and x an element in this system. It follows that an abstract office weakly depends
on the other offices and on the abstract structure itself, «for in order to individuate
such an office we need a realization of the structure. But this is also all we need to
individuate the relevant abstract structure itself». (Linnebo 2008, p. 79).

As such, Linnebo’s compromise view favors a non-eliminative approach to
objects. However, Wigglesworth (2018, p. 223) has objected that the proposed
account of dependence turns out to be not available to ante rem structuralism — to
which Linnebo implicitly restricts his metaphysical investigation; in fact, according
to Linnebo’s definition of strong dependence, the individuation of abstract structures
must proceed via a realization R. Arguably, R does not refer to a particular
system (for any other system exemplifying the relevant structure would suffice to
individuate it); what it is required is that some systems realize such structure. Even
if this is the case, it follows that abstract structures strongly depend on the existence
of some systems exemplifying them; but this is the thesis that is actually rejected by
ante rem structuralism and endorsed by in re structuralism.

By contrast, Wigglesworth’s (2018) interpretation of ante rem structuralism in
terms of metaphysical grounding is supposed to supply a broader account, which
relies on Linnebo’s (2008) characterization of dependence and yet is consistent
with an ante rem individuation of structures. The introduction of grounding relies
on Linnebo’s idea that the individuation of an object involves the explanation
of its identity. Insofar the explanation at hand is metaphysical explanation, the
dependence claims also qualify as grounding claims — given the close relation
between dependence, grounding and metaphysical explanation.

Despite the analogies between grounding and dependence, grounding is gener-
ally understood as a distinct metaphysical relation, which fulfills stricter conditions
(irreflexivity, asymmetry and transitivity). At its core, grounding captures the idea
that some things obtain because or in virtue of some other things. If dependence
holds between entities, the relata of the grounding relation are typically facts or
propositions. In particular, a fact is said to be grounded in another fact either for
its identity or for its existence. In mathematical structuralism, grounding claims
plausibly involve the identity of facts: «the fact that one entity has the identity it has
grounds the fact that another entity has the identity it has». (Wigglesworth 2018, p.
225).!% Another important distinction is that between full and partial ground.?® Full
ground entails that X on its own fully grounds Y; partial ground is generally defined
in terms of full ground: X partially grounds Y just in case there is something else
together with X such that they jointly ground Y.

19 Shapiro (2008, p. 302) himself has rejected a form of existential dependence, given that
mathematical objects necessarily exist.

20 This distinction has been introduced by Fine (2012).
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In such grounding framework, ante rem structures are identified with unlabelled
graphs (G) composed by nodes () and edges (E) between the nodes — corresponding
to objects and relations respectively — where E, is the collection of the structural
relations that a node instantiates and G is the isomorphism class of G.

With these clarifications at hand, let us investigate grounding claims in mathe-
matical structuralism more deeply. In analogy with Linnebo’s analysis (2008), two
grounding claims are set out:

1. (ODO): for any mathematical objects, n; and ny, in the structure G, the fact that
the identity of nj is Eq; partially grounds the fact that the identity of ny is Epp.

2. (ODS): For any mathematical object, n, in the structure G, the fact that G € G
fully grounds the fact that the identity of n is Ej,.

The comparison between mathematical structuralism and graph theory allows to
delineate straightforwardly identity criteria for structures: Wigglesworth argues that
structures are not grounded for their identity in the nodes — which can be permuted
leaving the graph unchanged — but in the operation of adding or removing an edge
between the nodes, which would result in a different graph. This allows for an
interpretation of grounding claims in terms of possible structures/graphs, which do
not refer to any realization of the structure: «and so, unlike Linnebo’s account, it
is an account of grounding that is available to both the ante rem and in re non-
eliminativist structuralist» (Wigglesworth 2018, p. 232). In a nutshell, the identity of
a graph G is determined by its isomorphism class G. This is a standard definition of
structures provided by Shapiro (1997, p. 93) in the context of ante rem structuralism:

We stipulate that two structures are identical if they are isomorphic. There is little need to
keep multiple isomorphic copies of the same structure in our structure ontology, even if we
have lots of systems that exemplify each one.

Hence, Wigglesworth’s (2018) account of grounding has the advantage of
preserving an ante rem individuation of structures. A more detailed analysis of
the properties of grounding provides further reasons to adopt grounding — rather
than dependence — in order to account for (non-eliminative) structuralist claims.
Even if both grounding and dependence are forms of metaphysical explanation,
grounding is taken to have a stricter connection with metaphysical explanation,
allowing in some cases for an identification of the two notions:>! in fact, grounding,
by being irreflexive, admits a full overlap with explanation, which standardly entails
irreflexivity.>? This fits well with the structuralist idea that structures ground objects
in the sense of metaphysically explaining their identity, and reinforces the priority
of structures by securing their explanatory import in mathematical structuralism. In
terms of metaphysical explanation, the identity of an object is partially explained by
its relations with any other objects in the same structure (ODO) and fully explained
by the structure — there is nothing outside the structure explaining its identity (ODS).

21 Among others, Dasgupta (2014) Raven (2015) and Thompson (2018) identify the two notions.

22 This is not the case for dependence, which can be reflexive (i.e. an entity ontologically depends
on itself).
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On this view, grounding seems to capture the relation between objects and
structures more deeply, and it is also a better tool to formulate WMS, which is
the objective of the next section.

7.7 Weak Mathematical Structuralism (WMS) and Numbers
as Thin Mathematical Objects

Let us briefly come back to scientific Weak Structural Realism, which asymmet-
rically defines the relation between objects and structures and appeals to Lowe’s
identity dependence (ID).

WSR: The identity of the putative objects/nodes is (asymmetrically) dependent (ID)
on that of the relations of the structure.

In analogy with WSR, let us formulate WMS in terms of grounding:

WMS: The fact that an object has the identity it has is fully (and asymmetrically)
grounded in the fact that the structure it belongs to has the identity it has.

The relevant sense of grounding at play is adequately captured by the (ODS)
grounding claim, that addresses the asymmetrical relation between objects and
structures:

ODS: for any mathematical object, n, in the structure G, the fact that G € G fully
grounds the fact that the identity of n is E.

By contrast, I will leave aside (ODQO), which accounts for the symmetrical
interdependence among objects and has been largely considered as a circular and
not well-founded claim.

Articulating WMS in terms of (ODS), it seems that a category of objects can be
individuated, which I will call thin mathematical objects: such reconceptualization
of objects provides a variation of Shapiro’s ‘places as objects’ and requires a
significant reconsideration of their structural and non-structural properties. The
comparison between mathematical structures and unlabelled graphs (cf. Ladyman
and Leitgeb 2008; Wigglesworth 2018; Leitgeb 2020, part B) allows grasping
thin mathematical objects more in detail. Within structures/graphs, objects can be
understood as unlabelled and edgeless nodes, as illustrated in the following Fig. 7.2:

In my account, these nodes seem comparable to quantum particles in entangle-
ment states (cf. fig. 1, p. 9). They are interchangeable because they can be permuted
while leaving the graph unchanged; hence, their identity as individuals is solely
determined by the relevant graph G’. However, the nodes in question cannot collapse

G’ o o

Fig. 7.2 Two unlabelled nodes in an edgeless graph
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into one another, since they would result in a different (smaller) graph. Exactly as
quantum particles, they appear as numerically distinguished relata whose existence
results in both structural and non-structural properties.

In line with Linnebo (2008), structural properties in mathematical structuralism
can be described as the properties that can be inferred through a process of
abstraction (e.g. Dedekind’s abstraction) or, similarly, as the properties that are
shared by every system that instantiates the structures.”> Still, this definition is
subject to different counter-examples, concerned with non-structural properties of
objects. Linnebo (2008, p. 64) takes into account the following cases:

The number 8 has the property of being my favourite number. It also has the property of

being the number of books on one of my shelves. And it has non-structural properties such

as being abstract and being a natural number. In fact, the property of being abstract seems
to be a very important property of natural numbers.

Here, different non-structural properties are mentioned: intentional properties
(e.g. “being my favourite number”), applied properties (e.g. “being the number of
books on one of my shelves”), metaphysical properties (e.g. “being abstract”) and
kind properties (e.g. “being a natural number”).

According to Linnebo, to have non-structural properties is not equivalent to have
intrinsic properties, defined as the properties that express the internal composition of
objects, or the properties which an object would have «even if the rest of the universe
were removed or disregarded» (Linnebo 2018, pp. 65-66).2* As I have suggested, in
the context of scientific structuralism non-structural properties of quantum particles
plausibly qualify as kind properties (i.e. state-independent properties such as mass
and spin). This interpretation may work also for mathematical structuralism, where
thin mathematical objects are endowed with kind properties such as “being a natural
number”.

Very few attempts to clarify kind properties in the mathematical domain have
been proposed. Intuitively, kind properties of numbers are strictly connected to
their counting and measurement use in applicative situations: for example, natural
numbers respond to the question “how many Fs are there?”, whereas the rationals
are defined for their role in measurement, i.e. as ratios between pairs of magnitudes,
the reals as limits of Cauchy sequences of rationals, etc.?

Kind properties so understood are clearly non-structural (counting collections
and measuring quantities are structure-independent operations) and yet non-intrinsic
(they express the applicative function of numbers, and not their internal composi-
tion.). On the other hand, if we assume that places from different structures are
distinct — as it is standard in ante rem structuralism — kind properties such as
‘being a natural number’ result in essential properties of numbers. This raises a

23 See Schiemer and Korbmacher (2017) for a distinction between Linnebo’s invariance account
and Shapiro’s (2008) definability account of structural properties in ante rem structuralism.
24 Cf. Esfeld and Lam’s (2011, p- 144) definition in scientific WSR (Sect. 7.4).

25 This understanding of kind properties presupposes to interpret numbers as cardinals, rather than
as ordinals.
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possible objection to WMS (and, more broadly, to ante rem structuralism, whose
typical slogan is that all the essential properties of numbers are structural). In this
context, I will follow Shapiro (2006, p. 121) who acknowledges that while some
extra-structural properties can be essential (such as ‘being abstract’, ‘being non-
spatio-temporal’), each property of a mathematical object ‘comes in virtue of” its
being the place it is in the structure to which it belongs. This plausibly generalizes to
non-structural kind properties: the fact that the naturals, relatives, rationals, etc. are
distinct — and then exhibit different kind properties — stems from their being ‘tied’ to
different structures. As such, kind properties of numbers appear to be secondary to
their structural properties and then can be accommodated in a structuralist account
of objects.

On this basis, thin mathematical objects are defined by the conjunction of the
following two conditions:

1.b) Thin objects [Identity]: thin objects are entities whose identity is entirely
grounded in the structure.

2.b) Thin objects [Existence]: thin objects are entities whose existence (resulting
in both structural and non-structural kind properties) is necessary to posit
relations themselves.

I will now turn to the metaphysical issues (i—ii) presented so far in the philosophy
of science, that concern thin mathematical objects as well.

(i) are thin mathematical objects substantial enough to avoid resulting in a ‘no-
objects-at-all’ position?

(i) are thin mathematical objects weak enough to preserve a structuralist frame-
work?

I will face the first issue by investigating how thin mathematical objects respond
to ‘the problem of objects’ and ‘the problem of identity’ in ante rem structuralism.

Let us start by the ‘problem of objects’. Shapiro’s places as objects are generally
described as possessing structural properties only. By contrast, definitions 1.b and
2.b allow to elaborate numbers as entities which are endowed with both structural
and non-structural kind properties. Such properties cannot individuate objects of
the same kind, but are able to introduce them as numerically distinguished relata,
conceivable independently of the structures and existing metaphysically prior to
them. On that view, mathematical objects are not ‘impoverished’ in the way places
as objects seem to be: there is actually something standing in the relations that are
supposed to confer individuality on the relata, as required by the reference to (non-
eliminative) grounding. So, a possible solution to the ‘problem of objects’ is put
forward.

Significantly, this seems to apply to some cases of non-trivial automorphisms,
which are relevant for the identity problem: consider, for instance, the relative
numbers structure, in which the numbers +1 and —1 are discernible because +1
corresponds to the natural numbers kind, that is a subset of the relative numbers
kind. Admittedly, 41 has the specific kind properties of the natural numbers, i.e.
those properties which are used to count collections of objects. The negative relative
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number —1 displays a different set of kind properties, extended from those of natural
numbers in order to count collections in which negative quantities come into play
(the counting of collections with just one/two . . . individual(s)). This solution is not
unproblematic, and it is questionable whether it can be applied to other cases of non-
trivial automorphisms. Nevertheless, it has the advantage of not involving either a
primitive notion of identity or the reference to a weak form of PII, thus opening the
path to a third way to overcome the identity problem.

Therefore, thin mathematical objects appear to be substantial enough to provide
a possible response to the ‘problem of objects’ and ‘the problem of identity’, thus
addressing the first issue introduced so far (i. are thin objects substantial enough?).

Let us now consider the second issue (ii. are thin objects weak enough?). First,
thin mathematical objects lack intrinsic properties and any internal nature — their
identity is solely given by the structure; in fact, admitting objects with intrinsic
properties would be inconsistent with an ante rem structuralist framework,?® and
would rather commit to a platonist view about objects.”’ Nevertheless, one may
object that ‘being thin’ could qualify as an intrinsic property itself. Recall Linnebo’s
definition of intrinsic properties as the properties which an object would have «even
if the rest of the universe were removed or disregarded». This does not seem the case
for the property of ‘being thin’, whose characterization relies on the conjunction
of the two conditions Thin Objects [Identity] (1.b) and Thin Objects [Existence]
(2.b): while the existence of a mathematical object — being necessary — could be
in principle assumed independently of any other entities, this does not apply to its
identity, which requires structural relations to be determined. So, given that both
conditions should be fulfilled in order for an object to be ‘thin’, ‘being thin’ cannot
be considered an intrinsic property in Linnebo’s (2008) sense.

Second, thin objects do not commit to a form of in re structuralism, according
to which abstract structures depend on the systems instantiating them. Conversely,
they can be framed in an ante rem individuation of structures. As specified by
Wigglesworth (2018), the reference to grounding enables us to ground the identity
of structures/graphs in their isomorphism classes, where no systems are at play.

Hence, thin mathematical objects, though substantial enough to be legitimate
relata of structural relations, are also weak enough to retain the priority of
structures — in accordance with the asymmetry of WMS.

To sum up, thin mathematical objects appear as something more than Shapiro’s
mere positions but something less than the thicker objects occupying these positions
in systems.

26 In principle, ante rem structuralism is not inconsistent with platonism about objects (one can
be committed to a background ontology of self-standing structures and yet admit objects, i.e. the
natural numbers, which possess intrinsic properties and exemplify a specific structure); however,
the same position appears quite odd if applied to Shapiro’s places as objects which — by definition —
have no more than their structural relations.

27 Moreover, it is worth noting that intrinsic properties are consistent with other structuralist views,
i.e. set-theoretic structuralism (in which sets have intrinsic properties of membership, making them
‘self-standing’) and in re structuralism (where any possible object can belong to the structures).
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7.8 Concluding Remarks

Scientific Ontic Structural Realism (OSR) and mathematical ante rem structuralism
are intimately related positions, which assume structures to be fundamental and
ontologically prior and objects to be entirely reduced to their structural features.
This entails that all that matters about objects are their structural properties, an
assumption that has been deeply challenged in both the theoretical frameworks.

In the context of scientific structuralism, Weak Structural Realism (WSR) offers
the most tenable form of OSR and successfully escapes the ‘relation without
relata’ objection affecting eliminative views. WSR claims that objects (asymmet-
rically) depend on the structure for their identity, where the relevant sense of
dependence — distinctively non-eliminative in character — is captured by Lowe’s
identity dependence. Though less fundamental than structures, quantum particles
are reconceptualized as thin physical objects, endowed with both structural and non-
structural kind properties (state-independent properties of quantum particles). Kind
properties proved particularly useful to define thin physical objects (definitions 1.a
and 2.a) and grasp them more specifically: on the one hand, they are something
more than the ‘no objects at all’ perspective embraced by eliminative OSR, thus
responding to the ‘relation without relata’ objection. On the other hand, they are
something less than the thicker objects underlying the standard object-oriented
metaphysics, so that structures remain ontologically prior.

A similar path has been explored in the mathematical framework, in order to deal
with the ‘problem of objects’ and ‘the problem of identity’ in Shapiro’s (1997) ante
rem structuralism.

To this aim, I introduced Weak Mathematical Structuralism (WMS) as a novel
position, elaborated in close analogy with WSR. WMS relies on (non-eliminative)
metaphysical grounding and states that the fact that an object has the identity it has
is fully (and asymmetrically) grounded in the fact that the structure has the identity
it has.

The core of WMS consists of a significant reconsideration of Shapiro’s interpre-
tation of objects in terms of thin mathematical objects, understood as unlabelled
and edgeless nodes in a graph. Similar to thin physical objects, such objects possess
both structural and non-structural kind properties. In mathematical structuralism,
kind properties of numbers turned out to be involved in counting and measurement
facts, highlighting the different applicative uses of the naturals, relatives, rationals,
etc. Two definitions of thin mathematical objects have been set out (definitions 1.b
and 2.b) and a possible strategy to avoid the problem of objects and the problem
of identity has been advocated. At the same time, thin mathematical objects are
consistent with an ante rem individuation of structures. As such, thin mathematical
objects are something more than mere positions but something less than the ‘thicker
objects’ occupying these positions in systems.

In conclusion, WMS is advanced as a more moderate interpretation of ante rem
structuralism, which attempts overcoming its main difficulties (i.e. the problem of
objects and the problem of identity) without abandoning its core intuition (i.e. the
priority of abstract structures).
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Chapter 8 )
The Structuralist Mathematical Style: e
Bourbaki as a Case Study

Jean-Pierre Marquis

Abstract In this paper, we look at Bourbaki’s work as a case study for the notion
of mathematical style. We argue that indeed Bourbaki exemplifies a mathematical
style, namely the structuralist style.

Keywords Philosophy of mathematics - Epistemology - Philosophy of
mathematical practice - Bourbaki - Mathematical style

8.1 Introduction

In his article in the Stanford Encyclopedia of Mathematics on mathematical
style, Paolo Mancosu presents the challenge of developing an “epistemology of
(mathematical) style”:

Are the stylistic elements present in mathematical discourse devoid of cognitive value and
so only part of the coloring of mathematical discourse or can they be seen as more intimately
related to its cognitive content? (Mancosu, 2017)

There is no doubt that there are stylistic elements in the presentation of
mathematics. After all, writing and talking about mathematics is not purely a matter
of manipulating formal symbols organized in a unique manner. It is another issue to
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determine whether there are stylistic features in mathematics. Asking the question
brings us immediately to the practice of mathematics and all its aspects. One has
to define a concept. One has to state a theorem. One has to prove a theorem. One
has to construct a counter example. One has to find a method to compute a formula.
Etc. More often than one might think, in most cases, there is no unique path to
the solution to a given problem. Then, one has to write. One has to talk. And
there are myriad presentations possible. There are many different ways to introduce
and justify a definition, motivate and contextualize a theorem, write up a proof
and even organize a computation. Of course the plurality of presentations is not
unique to mathematics. Anyone who has to present and prepare some material is
faced with similar challenges. Is there an element of style that would be intrinsic to
mathematics? Or, at least, a style that would bring an epistemological dimension
that cannot be dissociated from the style? Are there styles of definitions, styles
that contain an inherent epistemological component? This is how I understand
Mancosu’s challenge. Thus, if it is taken up, its resolution has at least two parts.
First, identify what constitutes the stylistic elements in mathematical knowledge,
as opposed to methods, approaches, etc., or merely “color”. Second, show that
these stylistic elements have cognitive value and, again, are not merely “part of
the coloring”.

It seems a priori easy to identify what the “coloring” of mathematical discourse
might be: it should be some kind of ornament that accompanies a discourse, but
that does not essentially contribute to its cognitive content. The terminology itself
brings us back to the arts, any art, be it music, painting, sculpture, dance, acting,
literature, etc. This is the traditional association. If mathematical style is merely part
of the coloring, it would be akin to literary style, even a special case of the latter,
it would refer to a specific way of writing a mathematical presentation, dictated
by esthetic choices that do not have an impact on the epistemological content of
the mathematics itself. It may make a mathematical text clearer, more fun, more
powerful, more enjoyable or what have you, but if we are in the realm of coloring,
then it does not convey a specific epistemic content, it does not contribute to its
justification. It could be completely removed and the mathematics would be in
principle just as clear, just as right, just as justified. Underlying this conception of
mathematical knowledge is the idea that the truths of mathematics are organized in
an essentially unique logical network and that to know mathematics is to know this
web of logical relations. Whatever is added to this network would be ornemental,
for instance the use of pictures, of certain types of notations and symbols and, of
course, the presence of texts that are not directly part of the logical deductions.
However, as Mancosu points out himself, it is easy to find claims in the philosophical
literature that there are mathematical styles, be they individual styles, national styles
or epistemic styles. I refer the reader to the list he provides in Mancosu (2017).
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This paper is an attempt to face Mancosu’s challenge head on! by examining
the case of Nicolas Bourbaki, the well-known collective of French mathematicians
that initiated an ambitious and influential undertaking in 1934 and that led to the
publications of 28 volumes covering a large spectrum of modern mathematics—
from set theory to algebraic topology.> The project was initially meant to provide
a modern treatise on analysis, but quickly became something much larger, since
Bourbaki decided to start from scratch and organize the material from an abstract
standpoint. Bourbaki’s work was extremely influential and contributed to the
development of contemporary mathematics in many different ways. It had, in the
1960s, its supporters and detractors. Although the collective still officially exists
and still organizes an important seminar held in Paris, what we will focus on
in this paper is the work done by the first two generations of Bourbaki, namely
the founding fathers and those who joined the collective after WWIIL. Our main
claim is that this Bourbaki is a generic case of an epistemic mathematical style.
We also claim that this style is a direct consequence of a very specific conception
of mathematics, its nature, organization and articulation, namely the structuralist
style. Given these goals, the plan of our paper is straightforward. We will first
propose a general definition of mathematical style. Then we will take a close look
at Bourbaki’s mathematics. We will then step back and try to explain what we mean
by the structuralist style.

8.2 The Notion of Mathematical Style

As a first approximation, I submit that a mathematical style is a systematic way of
doing mathematics which is then represented in its presentations. More precisely, it
is a global and systematic pattern of choices that are made to define concepts, prove
or disprove theorems, solve problems, compute formulas. Note that we are within
a set of goal-oriented activities. For this approximation not to be a platitude, I have
to put some flesh around the bones. By systematic, I mean that the way of doing is
repeated, thus is identifiable and used more than once. A style, be it mathematical
or otherwise, cannot be a fluke, a singular manifestation of a behavior. It has to be
a way of behaving, of doing, of making that is a variation or a series of variations
around an identifiable pattern, even though the latter might be hard to define. But

I As 1 will make clear in the second section, I am not the first one to do so. One could go back
to Gilles Gaston Granger’s work on the notion in Granger (1968), also discussed in Mancosu’s
article. I will not use nor refer to Granger’s work here, for it would take us too far from our main
objective. I will, however, follow the steps of David Rabouin in Rabouin (2017).

21t is hard to determine the exact number of volumes, particularly in the original publications,
since some were published in parts and then in complete volumes. The best source of information
about the origins of the collective and its early work is still found in Beaulieu (1990). See also
Beaulieu (1994). Other important sources are Corry (1992, 1996, 2001, 2009). Corry’s work is
extremely valuable and stimulating.
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even for this to be possible, I claim that the following conditions have to be satisfied.
In order to have a mathematical style, there has to be:

1. A “standard”, a way of doing mathematics against which the alternative style is
contrasted; most of the time, this standard is implicit and is not recognized as
such by the practitioners;

2. A combination of patterns of behavior that deviate significantly from the
standard;

3. A systematic and voluntary use of these patterns; these patterns have to be used
and sought in all possible cases. They are not adopted as a mere option that can
be discarded at will and they are not practiced without the practitioner being
willingly aware of them; it has to be implemented as a conscious value in and for
itself.

Some comments and clarifications are required. The first condition, namely the
existence of an implicit (or explicit) standard seems to me to be inescapable. A style,
to be identified as a style, has to be distinctive in one way or another and for this to
be possible, there has to be something that it is distinguished from.

A style, to be recognized as a style, has to deviate significantly from a (implicit or
explicit) standard. It is, of course, difficult to qualify in general what ‘significantly’
means precisely. Within a given practice, there are variations. These variations by
themselves do not yield nor do they constitute a style, but they might the precursor to
a style. The expression ‘combination of patterns of behavior’ refers to ways of doing
that are guided or systematic, that follow a pattern. Of course, it is not a method nor
a combination of methods in the sense of an algorithm or algorithms. For a style is
fluid, changing within a certain range or space of variations, but also rigid enough
so that it can be recognized as such.

Last but not least, for a style to be a style, the patterns of behavior underlying
it have to be consciously adopted and applied in all possible cases, even those that
might seem outside the original scope of these behaviors. One subtle point has to
be made about the voluntary aspect. It is not that the person who is adopting these
patterns is aware that she is adopting a style—for she might not think of it in these
terms—,but she has to be aware that the patterns of behavior she is adopting are
deviant from the standards of the community. It is entirely possible that she is simply
adopting the patterns of behavior that seem to her to be the best or most effective
given her goal, what she knows and what she can do. In other words, sometimes
a style comes naturally and is not seen as being the result of a conscious effort to
behave the way that person behaves. But in the eyes of others, it is definitely a style.

Notice that a style is intrinsically historical. It appears at some point and can,
and usually does, disappear at another point. But it has to last sufficiently long so
that it can be identified as such. It can also become the new standard for a given
community and thus lose its status as a style if the new generations are taught to do
mathematics by adopting these behavioral patterns.

We propose a more precise definition of mathematical style. Let us fix a few
conventions. First, by an agent «, we refer to the author of a piece of mathematics,
be it an individual, a group of individuals, a collective, etc. Second, by a cultural
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context y, we refer to the accepted norms, implicit or explicit, in a given community,
that dictate how a certain activity has to be performed or is usually performed.
Needless to say, there are specialized cultural contexts, e.g. homological algebra,
descriptive set theory, etc., as well as more global cultural contexts, number theory,
algebra, analysis, even mathematics as a whole. Third, by patterns of definitions §,
we refer to ways of using a language, spoken or written—we use the term ‘language’
in a broad sense, including diagrammatic, visual, symbolic, etc., conventions —,
even introducing a new language and using it in a certain manner. Fourth, by patterns
of inference ¢, we refer to ways of arguing based on the choice of linguistic and/or
symbolic devices made, that is the choice of §. Contrast and compare, for instance,
the way mathematicians can now define the product of two sets X and Y. In the
language of set theory, one defines the Cartesian product in the usual fashion, that is
as a set containing the ordered pairs (x, y), withx € X and y € Y. In the language of
category theory, a product of two sets is defined as being an object P together with
two morphisms py and py satisfying the usual universal property. These choices
then determine to a certain extent the patterns of inference one can use and will use,
even though there is still room for variations in the patterns of inferences employed
within both contexts. We can now give our definition.

We say that a corpus of mathematics u, embodied in books, papers, talks, etc.,
produced by an agent o exhibits or has an epistemic style o in the cultural context
y if and only if o is a systematic way of solving problems that rests upon:

i. specific and systematic patterns § of definitions that differ significantly from the
standards of y;
ii. specific and systematic patterns ¢ of inference that differ significantly from the
standards of y;
iii. combinations x of components of § and ¢ in the solution of problems, the
organization of concepts, results and relations between the parts of u that differ
significantly from the standards of y.

This gives a general definition of a mathematical style, but it does not provide
the features of a particular mathematical style. To get the latter, one has to define 8,
L, their combinations « and specify how they deviate from the standards of y.

Let me immediately illustrate this definition by a concrete example, which I hope
will be useful. I claim that members of the contemporary community of logicians,
mathematicians and computer scientists who are developing and using homotopy
type theory could end up practicing a new style of mathematics in the foregoing
sense. I cannot, of course, describe homotopy type theory in such a short paper.’ I
will sketch the main elements that I believe can justify my claim.

3 See Collective (2013) for a presentation of the theory and how mathematics is developed within
it. Of course, homotopy type theory is also presented as a new foundational framework. As a
consequence, it is taken to be global and systematic, which are two elements that are crucial to our
approach. I underline again that the ‘global’ is always relative to a community. It could be all of
homological algebra, or all of algebraic geometry, but not all of mathematics, for instance.
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First, homotopy type theory can be used systematically to do mathematics, to
solve mathematical problems. It differs as such significantly from the standards
used, implicitly or explicitly, by the contemporary community of mathematicians.
The language of homotopy type theory is not based on the standard universe
of sets or a variant thereof. Classical mathematical entities are defined by using
new means of definitions and theorems and computations are obtained by novel
inferential and computational patterns. Classical constructions and concepts, e.g.
sets, the homotopy groups, the Hopf fibration, Eilenberg-Mac Lane spaces, etc., are
defined in novel ways and proofs of theorems have to go through new paths (no pun
intended). See Licata and Finster (2014), Rijke and Spitters (2015), and Buchholtz
et al. (2018) for some examples.

I want to emphasize that we need not have such a well-defined, formal frame-
work to characterize a singular mathematical style. In fact, as it develops, the
mathematical practice based on homotopy type theory might become a mixture
of purely formal, computational mathematics, checked by computers, and informal
expositions containing the main mathematical ideas involved in the computations.
However, the latter does not constitute its style. Its style resides in the patterns
of definitions, patterns of inferences and their combinations in the solutions of
mathematical problems. It is not tied up to specific axioms, e.g. the univalence
axiom, of homotopy type theory, but rather basic methodological features built into
it. Thus, some of the technical, formal aspects of homotopy type theory might be
modified, even abandoned, and the style could still be present. The style is not
attached to the specific (univalent) foundational framework presented and explored,
but rather to the language, the manners of defining, proving and calculating that can
be kept apart from the specific formal framework.

To make sure that our example does not mislead the reader in thinking that our
definition of mathematical style applies only to formalized mathematics and formal-
ized theories, let me fall back on a recent analysis of the notion of mathematical style
proposed by David Rabouin. Even though Rabouin does not give a general definition
of the notion of mathematical style in his paper (Rabouin, 2017), his approach is
close to ours in many respects and has, in fact, inspired ours.*

Based on Chevalley’s paper on mathematical style, Rabouin identifies a mathe-
matical style with a way of writing that inflects mathematical thought. After pointing
out that Chevalley does not give a definition of mathematical style, Rabouin presents
Chevalley’s position thus: “...he [Chevalley] merely states that one can identify
general tendencies in ways of writing mathematics. .. ’(Rabouin, 2017, 142), and
then quotes Chevalley saying that there are “revolutions that inflect writing, and thus
thought.”(Rabouin, 2017, 145). There are other elements that are implicitly included
in Rabouin’s analysis. Two features have to be underlined, for they are directly tied
to our analysis. The first component has to do with patterns of inferences, which he
mentioned in an example:

4 There are also parallels with (Kvasz, 2008), but we will not expand on this particular point here.
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When Poincaré used the e-style, it was not because he shared a certain conception with
Weierstrass of what the objects (...) involved in this manipulation were and about the
good (in this case ‘rigorous’) delineation of the theories, but because this way of writing
allowed some powerful inferences that were not possible in the previous style. (Rabouin,
2017, 148)[my emphasis]

Finally, another relevant element comes up when he discusses the Cartesian style:

Both Descartes’s and Fermat’s methods rely on a kind of inferential black box coupled
with geometrical reasoning. This allows us to give a more precise characterization of the
Cartesian style (at least for one important aspect): its core is not the use of algebra in and of
itself (which existed long before Descartes and Fermat) but the coupling of specific kinds of
computational inferences with geometrical ones. In this sense, one can say that the Cartesian
style of geometry, even if it did not suddenly disappear, took a dramatic turn around 1750
with the first formulations, which, as later emphasized by Joseph-Louis Lagrange, were free
from any diagrammatic inferences—Leonhard Euler (1748) can be considered a starting
point here. (Rabouin, 2017, 154)[my emphasis]

It is not only the computational inferences but also the geometrical inferences that
we want to underline here, which we include in the patterns of inferences contained
as an intrinsic part of the language or the writing.

Rabouin gives also the examples of Leibniz’s style of (transcendental) geometry,
set theory as a language (as opposed to formalized set theory) and the Euclidean
style of geometry> as examples of his notion of mathematical style.

As emphasized by Rabouin, a style can be adopted for a variety of reasons, even
incompatible reasons, and these reasons are not necessarily philosophical. For some,
it might be associated with a specific ontology. To others, it might be seen as a
consequence of a chosen epistemology. It is even conceivable that some see in it an
ideological or political component. Finally, it might simply be more effective than
another way of solving certain problems. The main point here is that the style is not
defined by only a common ontology or a common epistemology, etc.

I will now try to show that Bourbaki is an exemplar of the notion of a
mathematical style.®

8.3 Bourbaki’s Style

Bourbaki is particularly interesting when looked at from the point of view of the
notion of mathematical style. The fact is, we could use the expression “Bourbaki’s
style” in three different senses.

5 At least as interpreted by Ken Manders in his Manders (2008).

1 am using the term ‘exemplar’ in a sense similar to Kuhn’s usage in his postscript of the second
edition of Kuhn (1970).
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1. Bourbaki had a unique method of work; it was a collaborative effort unlike any
other before and, as far as I know, ever since.” This in itself deserves to be called
“Bourbaki’s style of work™.

2. Bourbaki developed a unique, terse way of presenting mathematics which even
became known as “Bourbaki’s style”. We can therefore talk about “Bourbaki’s
presentation style”.

3. Finally, and most importantly for our project, Bourbaki’s modes of development
of mathematics itself, centered on a certain notion of structure and of how to
do mathematics in a structuralist fashion. It is of course at this level that our
characterization of the notion of mathematical style ought to apply to Bourbaki.
Thus, there is “Bourbaki’s structuralist style”.

These three senses of styles are not independent. The third, namely the mathematical
style as such, emerged in part from the first, Bourbaki’s method of work. The
second, the writing style, is a direct consequence of the third and the first
components. We will look at these three senses in turn. But before we do so, we have
to provide a minimum amount of information about Bourbaki, for it is an essential
part of the context.

8.3.1 Bourbaki: A Very Short Description of the Group
and the Project

Bourbaki was famous among mathematicians, and intellectuals in general, from the
1960s until the beginning of this century approximately. The new generation of
philosophers, logicians and mathematicians have very little knowledge of who they
are, what they did and why it was important, and thus it seems appropriate to give a
short presentation of the group.?

André Weil (1906-1998), Henri Cartan (1904-2008), Claude Chevalley (1909—
1984), Jean Delsarte (1903—-1968), Jean Dieudonné (1906—-1992), René de Possel
(1905-1974), a group of young and ambitious mathematicians, all former students
from the Ecole Normale Supérieure in Paris, an élite school, met for the first time
in December 1934 to discuss the idea of writing together a modern textbook in
analysis. Except for Claude Chevalley, the youngest member of the group, they were
all university professors who found that they did not have at their disposal a decent
textbook to work with and Weil convinced them that the best solution was simply

7 The closest I can find nowadays are The Stack Project in algebraic geometry, the nLab in
higher dimensional category theory and Gowers’s Polymath Project. But they all differ in one
way or another from Bourbaki’s work. See https://stacks.math.columbia.edu/about for the Stack
Project, https://ncatlab.org/nlab/show/HomePage for the nLab and https://en.wikipedia.org/wiki/
Polymath_Project for the Polymath project.

8 There is nothing original in this section. The interested reader can consult (Beaulieu, 1990, 1994;
Corry, 2004, 2009; Houzel, 2004; Mashaal, 2000) for more.
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to write one. They certainly did not know then that they had just set in motion a
unique collaborative enterprise that would not only last well after their withdrawal
from the group, but that would also have a deep impact on the face and development
of mathematics in the twentieth century.

They were well aware that mathematics was changing and that Hilbert and his
school were promoting the axiomatic method in mathematics. Many of them had
visited Gottingen, Berlin, Hamburg, Frankfurt, Munich, Rome, Stockholm, Zurich,
Copenhagen, Princeton (to mention but the most important places) during their
graduate studies or afterwards. They had all read Van der Waerden’s Moderne
Algebra and it had a great impact on them.

The first “extensive” meeting took place in the summer of 1935.” The compo-
sition of the group changed somewhat in the meantime and would change again in
the following fall. We will not follow the exact composition of the group through
time. Suffice it to say that Weil, Cartan, Chevalley, Delsarte and Dieudonné formed
the core of the group for the first 20 years or so. Charles Ehresmann (1905-
1979) joined the group in the fall of 1935 and left in 1947. After WWII, Laurent
Schwartz (1915-2002), Pierre Samuel (1921-2009), Roger Godement (1921-2016),
Jean-Louis Koszul (1921-2018), Armand Borel (1923-2003), Jean-Pierre Serre
(1926- ), Alexandre Grothendieck (1928-2014) and Pierre Cartier (1932- ) joined
the collective at some point. Samuel Eilenberg (1913—-1998), one of the fathers
of category theory, became a member in 1950. All the members were creative
mathematicians who all had respected individual careers. All of them nonetheless
said that being members of Bourbaki and working together had a deep influence on
their individual work."0

The original plan was simple enough: write a modern textbook on analysis. It
became clear that they needed to start with what they called an “abstract packet”,
which included set theory, general topology and algebra as it was then known.
Notice that these three disciplines were being created at the time. Indeed, Bourbaki
contributed to their evolution and stabilisation.!! What was supposed to be merely
an introductory chapter rapidly became a large undertaking. Bourbaki first published
a fascicle of results on set theory in 1939. It was not, as such, a textbook, for it
contained no proofs. They decided to publish it nonetheless, since many of the
results on sets were to be used in subsequent volumes. The complete volume on
set theory finally came out in two parts, one published in 1954 and the other in
1957. The last one contains the chapter on structures. Notice how long it took them
to finally get it published: almost 20 years. The volume on sets and structures has a

% In fact, the group had met every two weeks during the winter and the spring of 1935. The summer
meeting was an intensive session where they hoped to do more work together.

1011 4 late interview, Henri Cartan declared: “In Bourbaki I learned very much. Almost all I know
in mathematics I learned from and with the Bourbaki group.”’(Jackson, 1999, 785).

1T Suffice it to say that the axioms of topology in terms of open sets came directly from Bourbaki.
So does the notation for the empty set, J, among other things.
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tortuous history and it went through numerous versions.'? It might be worth pointing
out that the general notion of structure was not in Bourbaki’s mind in 1935. It
showed up for the first time during the meeting held in the summer of 1936, but
as an undefined concept. It then went through various presentations and the final,
published version, did not satisfy the group, for reasons that we will clarify later.

Despite the fact that they had to modify the original project in numerous ways
and even, at some point, to scale it down, Bourbaki started publishing books as early
as 1940. The first volume contained the first chapters of General Topology, quickly
followed by the first chapters of Algebra in 1942. Subsequent chapters on topology
and algebra follow in 1947 (topological groups, linear algebra), 1948 (multilinear
algebra, real numbers), 1949 (functions of a real variable, functional spaces) and in
the 1950s, they basically published a volume a year, up to the theory of integration.
It was an intensive undertaking, ambitious and systematic. No single author could
have done that. Even for a distinguished group, and especially given their method
of work, it is remarkable that they succeeded in doing anything.

8.3.2 Bourbaki’s Method of Work

Team work is neither easy nor simple.!> A large amount of trust and respect has
to exist between the members for anything to be done. There also has to be an
agreement as to what the final goal is, otherwise the group spends countless hours
wasting time discussing that goal. In Bourbaki’s case, the target was clear at the
beginning, but it changed as the work developed. Somehow, the original members
agreed on a method of work and it led to the publications mentioned. The method
was brutal. Here is how Dieudonné presented it later.!*

The work method used in Bourbaki is a terribly long and painful one, but is almost imposed
by the project itself. In our meetings, held two or three times a year, once we have more or
less agreed on the necessity of doing of book or chapter on such and such a subject (.. .), the
job of drafting it is put into the hands of the collaborator who wants to do it. So he writes
one version of the proposed chapter or chapters from a rather vague plan. Here, generally, he
is free to insert or neglect what he will, completely at his own risk and peril, .... After one
or two years, when the work is done, it is brought before the Bourbaki Congress, where it is
read aloud, not missing a single page. Each proof is examined, point by point, and criticized
pitilessly. One has to see a Bourbaki Congress to realize the virulence of this criticism and
how it surpasses by far any outside attack. (...) Once the first version has been torn to
pieces — reduced to nothing — we pick a second collaborator to start it all over again. This
poor man knows what will happen because although he sets off following new instructions,

12 It is now possible to consult these versions on line, since the early documents have been digitized
and made available on the site http://sites.mathdoc.fr/archives-bourbaki/

13 For more on Bourbaki’s method of work, the reader can consult the references given in the
previous footnotes.

14 Other original members have provided similar descriptions and later members concurred. See,
for instance Guedj (1985) or Cartan (1979).
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meanwhile the ideas of the Congress will change and next year his version will be torn to
bits. A third man will start, and so it will go on. One would think it was an endless process,
a continual recurrence, but in fact, we stop for purely human reasons. When we have seen
the same chapter come back six, seven, eight, or ten times, everybody is so sick of it that
there is a unanimous vote to send it to press. This does not mean that it is perfect, and very
often we realize that we were wrong, in spite of all the preliminary precautions, to start out
on such and such a course. So we come up with different ideas in successive editions. But
certainly the greatest difficulty is in the delivery of the first edition (Dieudonné, 1970, pp.
141-142).

The result was perhaps not perfect, but very few books are written in that way and
go through such a rigorous editing process. Although not faultless, the final result
was certainly better is some ways than what it would have been had it been the
product of a single individual. Definitions were weighed, proofs were criticized, the
organisation of theorems was analyzed, the overall network of concepts and results
was evaluated by first-rate mathematicians. The result was something unique. There
is one important component of the method that Dieudonné did not underline. As
Chevalley later put it: “This allowed our work to submit to a rule of unanimity:
anyone had the right to impose a veto. As a general rule, unanimity over a text
only appeared at the end of seven or eight successive drafts.”(Guedj, 1985, 47).
Majority was not enough. If only one member thought that a manuscript was not
good enough, it had to be rewritten. Like I said, it was a brutal process.

This mode of collaboration certainly played a role in the redactions of the
volumes published over the years. It contributed in an essential way to the
construction of the presentation of the material and its organization. For, when one
looks at the works of its individual members, it is clear that there are differences
between what Bourbaki published and what they published, even when some of the
members produced expository material. Chevalley, for instance, is more radical than
Bourbaki in some ways. I cannot refrain from quoting a long passage from a review
of Chevalley’s textbook on algebra, (Chevalley, 1956), written by Mattuck:

Chevalley has written a text-book, and his mathematical personality permeates every para-
graph. [...] The book is tight, unified, direct, severe; relentlessly and uncompromisingly
it pursues its ends: out of the simplest basic notions of algebra to build up with perfect
precision the theory of multilinear algebras which have found applications in topology and
differential geometry. [...] The unity is monolithic. Gone is the discursive rambling of
previous texts. This one marches unswerving and to its own music. [... ]

The general approach to the subject matter is that of Bourbaki’s first three algebra
chapters, but there are significant differences in content and treatment (Chevalley is
often more general). As for the style, Bourbaki emerges from the comparison a warm,
compassionate, and somewhat elderly gentleman. (Mattuck, 1957, 412)[my emphasis]

Mattuck directly refers to Bourbaki’s style or presentation and compares it to
Chevalley’s. There is no doubt that to characterize Bourbaki’s style of presentation
as “warm, compassionate, and somewhat elderly” was deeply ironical. To most
readers at the time, Bourbaki was anything but warm, compassionate and somewhat
elderly! Mattuck’s description of Chevalley’s book as “tight, unified, direct, severe”
is precisely what its contemporaries would have claimed of Bourbaki’s books.
Chevalley was pushing it even further.



210 J.-P. Marquis

Weil, on the other hand, wrote books that are definitely not in Bourbaki’s style, at
least not in the sense that I am using the term. For instance, in his review of Weil’s
Foundations of Algebraic Geometry, Oscar Zariski underlines the fact that “It is
a remarkable feature of the book that—with one exception (Chap. III)—no use is
made of the higher methods of modern algebra. The author has made up his mind
not to assume or use modern algebra ‘beyond the simplest facts about abstract fields
and their extensions and the bare rudiments of the theory of ideals’.”(Zariski, 1948,
671). Zariski himself claims afterwards that “we may just as well help ourselves
to modern algebra to the fullest possible extent”, a claim certainly consistent with
Bourbaki’s style. And then, he goes on, this time talking about Weil’s writing itself:
“To achieve his objectives Weil wages a campaign of the Satz-Beweis type. Most
readers will find it difficult to follow the author through the seemingly endless
series of propositions, theorems, lemmas and corollaries (their total must be close
to 300).”(Zariski, 1948, 674). Thus, it can be claimed that, although the choice of
exposition made by Weil was close to what one finds in Bourbaki—the Satz-Beweis
type —, the patterns of definitions and inferences were not. In fact, as we will argue,
there is another important aspect of Bourbaki’s style that Weil does not quite follow
to its natural conclusion in his work.

It is important to note that Bourbaki’s volumes are expository. They are
not research monographs, even though some of them include some very recent
developments at the time of their writing. But I do not believe that the analysis that
I propose is limited to these expository works. It can and was adopted by some of
Bourbaki’s members. I would claim, for instance, that Chevalley and Grothendieck
both have produced mathematics that exhibit Bourbaki’s style, although in the
case of Grothendieck, it is a structuralist style that is a variant or an extension of
Bourbaki’s. These are empirical claims that will have to be established by looking
at their work if my analysis holds any water.

Let us now briefly look at the mode of presentation of the material chosen by
Bourbaki. We first want to emphasize one aspect that, although important in the
organization and the presentation of the material, does not constitute, in my opinion,
an essential aspect of Bourbaki’s structuralist style.

8.3.3 Bourbaki’s Writings

Every book of Bourbaki’s Eléments de mathématique comes with a user guide.!?
They all open with a warning “To the Reader”. The first paragraph goes like this:

1. This series of volumes, [...], takes up mathematics at the beginning, and gives complete
proofs. In principle, it requires no particular knowledge of mathematics on the reader’s part,

15 Once again, I do not claim any originality in this section. But it is essential to untangle different
components present in the writings.
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but only a certain familiarity with mathematical reasoning and a certain capacity for abstract
thought. [...] (Bourbaki, 2004, v)

It is no accident that Bourbaki insists right from the beginning on a ‘certain
capacity for abstract thought” We will argue that it is in fact a crucial part of
Bourbaki’s mathematical style. The next paragraph goes into more detail.

2. The method of exposition we have chosen is axiomatic and abstract, and normally
proceeds from the general to the particular. This choice has been dictated by the main
purpose of the treatise, which is to provide a solid foundation for the whole body of modern
mathematics. For this it is indispensable to become familiar with a rather large number of
very general ideas and principles. Moreover, the demands of proof impose a rigorously fixed
order on the subject matter. It follows that the utility of certain considerations will not be
immediately apparent to the reader. .. (Bourbaki, 2004, v)

Notice that this solid foundation rests on the abstract axiomatic foundation, not
explicitly on logic and set theory, although the first volume is indeed on logic
and set theory. They certainly play a role and are part of the style, but it is clear
that the weight is placed on the abstract axiomatic method which is grounded on
them. Logical aspects of the volumes are nonetheless identified immediately. Logic
plays two important roles in the enterprise. The first one is global and described in
paragraph 4:

4. This series is divided into volumes (here called “Books”). The first six Books are

numbered and, in general, every statement in the text assumes as known only those results

which have already been discussed in the preceding volumes. This rule holds good within
each Book, [...]. At the beginning of each of these books (... ), the reader will find a precise

indication of its logical relationship to the other Books and he will thus be able to satisty
himself of the absence of any vicious circle.

Thus, there is a global logical organization of the whole books. It is systematic
and coherent.
The second one is local and shows up in the following paragraph.

5. The logical framework of each chapter consists of the definitions, the axioms, and the
theorems of the chapter. These are the parts that have mainly to be borne in mind for
subsequent use (Bourbaki, 2004, vi).

This is now a specific mode of presentation, based on a logical framework.
And indeed, anyone who has looked at and studied mathematics by reading
Bourbaki is struck by the following facts, which make it hard not to fall back on
Mattuck’s adjectives. The presentation can only be qualified as being extremely dry,
severe, austere, unified and terse. There are no images, no informal motivations or
descriptions, no explanations of the value of this theorem or that definition. But
at the same time, it is clean, elegant, and efficient. As some say that there are no
unnecessary notes in Mozart’s music, there are no unnecessary definitions, axioms,
theorems, lemmas and examples in Bourbaki’s mathematics. Another comparison
readily comes to mind: Bourbaki’s organisation of the material is akin to the plans
of the architects of the Bauhaus school and their students.
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Here is how Cartan described these components in 1958, at the heyday of their
production. Not surprisingly, we find the same elements contained in the note to the
reader.

All the books of part I are arranged from a strictly logical point of view. A concept or result
may be used only if it has appeared in a previous chapter of a book. Obviously, one has
to pay a high price for such rigor: the resulting presentation tends to become somewhat
ponderous. The reader finds its weightiness repellant, and the style is certainly not what
one would call inspiring. The mathematical text consists of a series of theorems, axioms,
lemmas, etc. This rigorous, precise style stands in sharp contrast to the light and not too
precise style of the French tradition at the end of the last century. [...] Today it is apparent
that this precise style is finding its way more and more into mathematical literature (Cartan,
1979).

Nothing is presupposed. Everything is defined from scratch and thereafter, the
proofs all depend on notions and theorems already given and proved. This is an
adequate characterization of Bourbaki’s expository style. But I argue that it does
not give us, as such, Bourbaki’s mathematical style.

In a different paper, written much earlier, Cartan makes the following remarks
about the logical component and the epistemic component of the axiomatic method:

Now suppose these axioms chosen once and for all. Our mathematical theory must not
restrict itself to be a dull compilation of truths, that is of consequences of axioms that we
note, for each and every one of them, laboriously the accuracy. For mathematics to be an
effective instrument and, also, for us, mathematicians, to be able to take a true interest in it,
it must be a living construction: one must clearly see the web of theorems, group the partial
theories. In this task, it is again the axiomatic method that comes to our help, by giving
us the principle of classification. [...] Today, more and more we tend to study algebraic
structures, topological structures, and ordered structures, etc. [... ]

Thus, not only the axiomatic method, based on pure logic, gives a steadfast seat to our
science, but it also allows us to organize it better and to understand it better, it makes it
more effective, it substitute general ideas to “computations” that, carried out haphazardly,
would most likely lead nowhere, unless done by an exceptional genius. (Cartan, 1943, 11)
[my translation and emphasis]

Thus, we have to distinguish the logical dimensions of the axiomatic method
from the epistemic dimensions. The epistemic dimensions are built upon the logical
ones. A purely logical presentation of mathematics already existed when Bourbaki
wrote their books: it was given by Russell and Whitehead Principia Mathematica.
Granted, it was not based on sets, and in some respects it was a failure, but it
certainly was rigorous, austere and precise. Bourbaki and some of its members did
publish on the logical foundations of mathematics'® And Bourbaki did claim that
he wanted to derive the whole of mathematics from the axioms of set theory.!” It
is clear that there is a polemical element present in these papers, in particular the
first two. Indeed, they present the foundational program in the spirit of Hilbert’s
answer to Brouwer. It is therefore tempting to reduce Bourbaki’s project to its
logical development. We believe that this move is, however, far too quick. For one

16 See Dieudonné (1939), Cartan (1943), and Bourbaki (1949).
17 This is explicit in Bourbaki (1949).



8 The Structuralist Mathematical Style: Bourbaki as a Case Study 213

thing, Bourbaki did not want to include logic in their project at first. And Bourbaki
always looked at logic as a mere instrument, as providing the proper grammar of
mathematics.

8.3.4 Bourbaki’s Style

Before we apply our general definition of mathematical style to Bourbaki, we
first have to present and discuss Chevalley’s article published in 1935 and entitled
“Variations of mathematical style”, (Chevalley, 1935), in the Revue de Métaphysique
et de Morale.'® Interestingly, while Bourbaki was coming to life, one of its members
published a paper in a philosophy journal that discusses precisely the notion of
mathematical style.!”

8.3.4.1 Chevalley on Mathematical Style

As we have already indicated, when discussing Rabouin’s analysis of the notion of
mathematical style in the foregoing section of our paper, Chevalley does not give a
general definition of mathematical style. He identifies three different mathematical
styles in his paper: the style based on infinitesimals, the e-style and the axiomatic
style. Each one of these is characterized by contrasting it with the preceding style.
Chevalley opens up his paper by saying that he is not interested in the personal
style of some mathematician, but rather the style of a period, a general tendency that
becomes the norm under the influence of certain individuals. To illustrate what he
means, he presents the “e-style”, a style forged under the influence of Weierstrass.
The e-style itself has a history and became the norm when infinitesimals were
seen to lead to difficulties. Thus, the desire to bring rigor into some mathematical
demonstrations, in particular those involving infinitesimal quantities, brought about
important changes in the practice of mathematics. Not that infinitesimals were not
useful; thinking and doing mathematics with infinitesimal quantities was fruitful,
even fertile. But their use needed some justification and it opened the door to some
anomalies, for instance Weierstrass’s discovery of a continuous real function in one

18 The title is Variation du style mathématique in French.

19 Chevalley is a very interesting case. Not only was he a brilliant mathematician, but he was also
interested in politics, philosophy and the foundations of mathematics. As he himself revealed later,
he was solely responsible for the inclusion of logic in Bourbaki’s books. One of his best friends
was Jacques Herbrand, a brilliant young logician who unfortunately died in a hiking accident in
1931 at the age of 23. Albert Lautman, the philosopher of mathematics who was killed by the
Nazis in 1944, was also one of his good friends. Later in his life, Chevalley joined Grothendieck
and founded the movement Survivre et vivre in Montreal during the summer of 1970. It might also
be worth mentioning that Chevalley studied under Emil Artin in the early 1930s and then with
Helmut Hasse, both vigorous developers of what was then called the “axiomatic method”.
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variable that is nowhere differentiable, but which can be defined nonetheless by
an ordinary looking Fourier development. It appeared that something was wrong
somewhere. Similar functions could show up in classical analytic theories without
notice. It was by trying to clarify the foundations of these infinitesimal quantities
that a new mathematical style emerged. This style, according to Chevalley, can be
identified by certain obvious traits.

As its name indicates, the usage, sometimes immoderate according to Chevalley,
of various €, with indices, is the most obvious feature of that style. The progressive
replacement of equalities by inequalities in proofs, theorems, etc. is the second sign.
Notice immediately that the components of the style identified by Chevalley are
argumentative strategies, ways of proving that are brought in to make mathematics
more rigorous. Although he does not mention what we called ‘means of definitions’
explicitly, he certainly could have done so.

According to Chevalley, it is precisely this reliance on inequalities that inevitably
lead to the limitation of that style and the need to develop a different style.

Indeed, while equality is a relation that makes sense for arbitrary mathematical beings,
inequality can only bear upon objects provided with a certain order, in practice only on real
numbers.?? This therefore leads, in order to embrace the whole of analysis, to the complete
reconstruction from real numbers and functions of real numbers. ...One could believe at
some point that mathematics would constitute itself in a unitary domain, founded entirely by
constructive definitions from the real numbers. (Chevalley, 1935, p. 379) [Our translation]

He simply states that this unification did not happen. For, some mathematical
concepts cannot be constructed from the real numbers, for instance the concept of
group. Geometry, although it can be constructed to a certain extent in the € style,
becomes somewhat ad hoc or artificial. The nature of points, as n-tuples of real
numbers, is not essential to geometry, as Klein had conclusively shown. It is the
group of transformations of a geometry that provides the equality of figures inherent
to that geometry, not the equality of points. Thus, in some cases, constructive
definitions provided by analysis hide the real nature of what they were trying to
define.

Chevalley then states that geometry provided, in fact, the material of what
was to become the new style. He attributes the emergence of this way of doing
mathematics to Hilbert’s work in geometry.”! One does not construct points,
lines, planes, and other geometric objects from more primitive notions, but rather
one simply stipulates, by stating axioms, some of their fundamental properties,
leaving the nature of the objects completely undetermined. One then proceeds by
proving theorems from these axioms and then note that the points of the geometry
can be associated to points of real numbers and that the axioms of the theory

201t is interesting to see that Chevalley does not consider abstract ordering structures at that point.
He did not know about Birkhoff’s or Ore’s work at the time. See Corry (2004) for more on the
latter. Bourbaki will later on think of order structures as fundamental to mathematics.

21 Whether this is historically adequate, we will simply ignore. It is a debate among Hilbert scholars
that need not concern us here.
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are true when geometric points and planes are replaced by objects constructed
from real numbers.?”> Hilbert’s success apparently inspired other mathematicians.
Chevalley mentions Lebesgue’s integral, which is given by a list of properties
and the concept of topological space, in which Weierstass limits are obtained
from a purely abstract characterization, as Fréchet has shown. And then, there is
algebra. Chevalley points out that one could even claim that the whole movement
in fact originates from that source, more precisely from Dedekind’s work and
teaching of abstract groups. However, in algebra, Chevalley claims that the turning
point can be found in Steinitz’s work on field theory. Chevalley then claims that
“the axiomatization of theories has profoundly changed the style of contemporary
mathematical writings”(Chevalley, 1935, p. 381).

Thus, the hallmark of the new style is the axiomatic method. Chevalley already
emphasizes the fact that the axioms are not chosen arbitrarily. Mathematicians
start from given, known proofs. One then performs an analysis of these proofs
and tries to identify the properties that are strictly necessary to obtain a given
result. One looks for the minimal logical requirements and tries to identify the
domain of mathematics in which the result can be proved. Once this is done, it is
possible to eliminate unnecessary hypotheses. In this way, according to Chevalley,
one obtains elegant demonstrations. Chevalley, in 1935, identifies the autonomous
domains of mathematics: in algebra, field theory, the theory of abstract groups,
ring theory, hypercomplex numbers (now known as algebras); in analysis, measure
and integration theory, topology, Riemann surfaces, Hilbert spaces; in geometry,
projective and conformal geometries, Riemann spaces, combinatorial topology
(renamed algebraic topology soon afterwards). In each case, we get a specific type
of abstract structure. Chevalley then claims that these theories combine, yielding,
for instance, topological groups, which is seen as a new abstract structure. In other
cases, some theories turn out to be based on the same axioms, or, in the words of
Chevalley, their axioms yield the same structure, as is the case of probability theory
and measure theory.

Traditional mathematical objects emerge from the combinations and interactions
of some of these abstract structures. Chevalley mentions the system of real numbers:
it is a field, a topological space, a topological group, an ordered set, a measured
space, etc. The properties of real numbers are either theorems of one of these
abstract structures that apply to them, or “properties resulting from the simultaneous
validity of many of these theories”(Chevalley 1935, p. 383[our translation]). It is
worth quoting the closing paragraph of Chevalley’s paper:

It results from all this that contemporary mathematics tries to define mathematical objects
in comprehension, that is by their characteristic properties, and not by extension, that is
by construction. This aspect is undoubtedly not definitive. But it is hard to predict at this
point in which direction it will evolve. Be that as it may, the actual tendency seems far from
having exhausted its internal dynamism. The diverse theories that have been separated up
until now probably have not attained their definitive form. Many of them will probably be
analyzed in terms of superpositions of even more general theories; others will turn out to be

221n the paper, Chevalley does not talk about interpretations, but by replacing one by another.



216 J.-P. Marquis

equivalent with one another or deriving from a common source. The structural analysis of
facts already known is far from being done, not mentioning the analysis of these new facts
that manifest themselves once in a while. (Chevalley 1935, p. 384)[our translation]

Chevalley is thus well aware that these autonomous domains, as he calls them,
might change as mathematics evolves.

The last sentence of the paragraph is, for us, revealing: one has to effectuate a
structural analysis of facts. Both words are important: one looks for a structure and
it is obtained via an analysis. Both words are philosophically loaded and have a
long history. Chevalley was certainly aware of that. Be that as it may, the expression
captures perfectly the basis of the new style. The structural analysis leads to the
identification of one or more structures and the latter are then explicitly captured by
the axiomatic method.?

In his paper, Chevalley provides a sketch of the ‘new point of view’ underlying
Bourbaki’s structuralist standpoint, Bourbaki’s style.”* It is striking to see that the
paper The Architecture of Mathematics and other papers written in the 1940s by
various members of the collective essentially repeat and expand on what Chevalley
had already said in 1935. They appear to be nothing more nor less than a more
precise and updated version of the same ideas.

8.3.4.2 Bourbaki’s Epistemic Mathematical Style

Contemporary mathematicians did not hesitate to talk about Bourbaki’s style in
such a way that it pointed towards something more than simply the writing style.
But no one clearly provided a characterization of the style. Halmos made a direct
comparison with music:

The Bourbaki style and spirit, the qualities that attract friends and repel enemies, are harder

to describe. Like the qualities of music, they must be felt rather than understood (Halmos,
1957).

There is no doubt that the style of presentation must be felt, but we will
nonetheless propose a characterization of Bourbaki’s epistemic style by applying
our general framework.

First, we have to identify y, the background culture, more specifically the
standards against which Bourbaki’s style has to be compared and contrasted. Since
their original goal was to write a textbook on analysis, the background is given by

23 But it might also be somewhat too short. In his paper Mathématiques et réalité published in
1936, Albert Lautman characterizes the work of the Hilbert school as providing ‘the synthesis of
necessary conditions and not that of the analysis of first notions.’(Lautman, 2006, 49). Lautman
is emphasizing the synthetic component inherent to the process of abstraction as embodied in the
axiomatic method. He also explicitly refers to Carnap’s work and the role of analysis in the latter.

24 Patras, in his book Patras (2001), takes a similar position with respect to the idea that Bourbaki
adopts a certain mathematical style.
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the French textbooks of the time, those that they were using themselves.> One of the
texts used at the time was Emile Goursat’s Cours d’analyse mathématique.”® Even
a cursory look at Goursat’s books indicates that it is an instance of what Chevalley
called the e-style, with many epsilons. Needless to say, Goursat does not use the
language of sets systematically, the definitions are informal, in the sense that there
is no explicit logical apparatus and there are no abstract structures involved either.

Let us move to &, the patterns of definition. First, Bourbaki decides to use
systematically, explicitly and in all cases the language of set theory as expressed
in first-order logic. As we have already mentioned, no less than three different
papers were written, namely by Jean Dieudonné, Henri Cartan and André Weil,
in the late 1930s and 1940s, the latter presented by André Weil at the meeting of the
Association of Symbolic Logic, to emphasized the need to provide explicit logical
foundations for the working mathematicians. They are clearly not interested in the
logical foundations of mathematics for its own sake, nor do they see in the latter as
having any real impact on the work of mathematicians.?” In fact, this choice has to
be put in the perspective of the cultural background y. For no one before Bourbaki
had explicitly decided to present concretely in a unified manner, in one language,
all the concepts required to do analysis, and, as they thought could be done in the
1930s and 1940s, the whole of mathematics. We will not belabor the idiosyncratic
system of axioms of set theory chosen by Bourbaki, for what matters to us is merely
the fact that they adopted the language of sets and the formalism of first-order logic
in their presentation and practice.?®

It is in this language that the axiomatic method is used to define abstract
structures. But we have to be clear as to what is meant here; it is not merely
that a mathematician postulates what she likes and derives theorems from there.
The axioms that come at the beginning of a presentation are in fact the result of
a “structural analysis”, to use Chevalley’s words, and they are put together, thus
synthesized, into a new, autonomous whole. The same idea appears later. In the

25 Needless to say, it would be relevant to do more detailed historical research and look carefully
at the textbooks that were in circulation in France in the 1920s and early 1930s. We know that
the original members of Bourbaki knew about and were influenced by books published outside of
France, e.g. van der Waerden’s Moderne Algebra, Seifert & Threlfall’s Lehrbuch der Topologie,
Alexandroff & Hopf’s Topologie, Lefschetz’s Topology, among others. We rely here on Beaulieu
(1990), Corry (2004), and Houzel (2004).

26 Goursat’s  books can be consulted online at https:/archive.org/details/
coursdanalysema0Ogourgoog/mode/2up.

27 Again, Chevalley is the only one who seemed to have taken a genuine interest in foundational
studies at the time. He even wrote a report on Godel’s work on the consistency of the continuum
hypothesis and I suspect that Godel’s work did influence him in his thinking as to how to
give a general metamathematical account of the notion of structure. But this specific point will
have to be argued elsewhere. For his report, see http://sites.mathdoc.fr/archives-bourbaki/PDF/
065_iecnr_074.pdf.

28 For critical evaluations of the axiomatic system adopted by Bourbaki, see Mathias (1992) and
Anacona et al. (2014).
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1940s, under the name of Bourbaki, Dieudonné wrote:

Today, we believe, however, that the internal evolution of mathematical science has, in
spite of appearance, brought about a closer unity among its different parts, so as to create
something like a central nucleus that is more coherent than it has ever been. The essential
aspect of this evolution has been the systematic study of the relations existing between
different mathematical theories, and which led to what is generally known as the “axiomatic
method”. (Bourbaki, 1950, 222)[my emphasis]

The function of the axiomatic method is to abstract new, original concepts from
classical settings, and then to use this to reconstruct and extend these classical results
in new directions. The idea is expressed later by Cartan:

From the beginning, Bourbaki was a decided supporter of the so-called axiomatic method.
[...] How does it [the axiomatic method] apply to higher mathematics? A mathematician
setting out to construct a proof has in mind well defined mathematical objects which he
is investigating at the moment. When he thinks he has found the proof, and begins to test
carefully all his conclusions, he realizes that only a very few of the special properties of
the objects under consideration have played a role in the proof at all. He thus discovers
that he can use the same proof for other objects which have only those properties he had
employed previously. Here we can see the simple idea underlying the axiomatic method:
instead of declaring which objects are to be investigated, one only has to list those properties
of the objects to be used in the investigation. These properties are then brought to the fore
expressed by axioms; whereupon it ceases to be important to explain what the objects are,
that are to be studied. [...] It is quite remarkable how the systematic application of such a
simple idea has shaken mathematics so completely (Cartan, 1979, 176-177).

This passage emphasizes the standards y of the time again: when Bourbaki
started to work on their project, this so-called axiomatic method was not system-
atically used in this way. There were important examples of its use in diverse areas,
but it was not conceived as a way to reconstruct the whole of mathematics, as a way
to introduce mathematical structures in general.

We are clearly dealing with a special type of axiomatic method which is now
part of a new set of patterns of definition. The axioms are merely a contingent
vehicle to talk about the concept of an abstract mathematical structure. The first
step of the axiomatic method is to excavate the essential working components in
diverse mathematical situations and extract or abstract the properties, operations,
relations, etc. that are then expressed in the axioms. The latter provide a structure, an
object of study in itself. Structures are related to one another in ways that classical
mathematical fields were not, that is, by the properties, operations, relations that
are abstracted out. It thus leads to a complete reorganization of mathematics and a
completely different understanding of mathematical concepts.

Bourbaki’s decision to use the axiomatic method throughout brought with it the necessity
of a new arrangement of mathematics’ various branches. It proved impossible to retain
the classical division into analysis, differential calculus, geometry, algebra, number theory,
etc. Its place was taken by the concept of structure, which allowed definition of the
concept of isomorphism and with it the classification of the fundamental disciplines within
mathematics (Cartan, 1979, 177).

This last sentence by Cartan captures an essential part of Bourbaki’s epistemic
style: “the concept of structure. . . allowed definition of the concept of isomorphism
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and with it the classification of the fundamental disciplines within mathematics.”
Thus, Bourbaki’s patterns of definition of structures include intrinsically the notion
of isomorphism. The latter is built in, it is part of the axioms, thus the definitions
and, it will be part of the inference patterns, as we will see. Alas, Bourbaki’s formal
characterization of the notion of mathematical structure is often seen as a failure.
We strongly believe that to discard it completely is a mistake; there is no need to
throw the baby out with the bathwater.

8.3.4.3 Bourbaki’s Definition of Abstract Mathematical Structures
and Isomorphisms

The importance of including the notion of isomorphism in the very definition of
structures was understood early by Bourbaki. Here is how Chevalley expressed it in
an unpublished version of the introductory chapter on sets:

There are finally cases where the content of thought refers almost uniquely to the formal
aspect of the notion considered. This is how, when a mathematician thinks of the content
of the idea that he has of isomorphic mathematical beings, he will note, we believe, that
he thinks less of the complete similarity of two objects as things than the following: any
theorem concerning one of these objects can be translated into a theorem concerning the
other. Chevalley, 26 [my translation]

Chevalley expresses a very important shift in this quote, a shift that will
be included in the final version of Bourbaki’s technical definition of species of
structure. We move from the idea of isomorphic mathematical beings in terms of
similar objects to the claim that they are objects that satisfy the same theorems of
a theory, or, from a proof-theoretical point of view, that the same theorems can be
proved about these isomorphic beings. Thus, the idea is to define structures with
the notion of isomorphism built in, so that if a specific theorem about one of these
structures is proved, then any structure isomorphic to it will satisfy the very same
theorem. Moreover, the only theorems such a theory ought to be able to prove are
precisely those that are invariant under isomorphism. Thus, the pattern of definition
includes a pattern of inference. This is the key component of the structuralist style.

Bourbaki’s published technical definition of a “species of structure” is indis-
putably clumsy and was recognized as such. Moreover, and as we will briefly
indicate later, when the final version was finally accepted by Bourbaki, they were
very well aware that their definition could not accommodate categories and functors,
and after many different attempts by different members, even Eilenberg, one of the
creators of category theory, they simply gave up and published their latest attempt,
which could only cover set-based structures.

I will not sketch Bourbaki’s technical definition. I will rather offer a recon-
struction of Bourbaki’s notion of species of structure.>” There are two reasons
for presenting the reconstruction rather than Bourbaki’s published version. First,

29 We thank Michael Makkai for this reconstruction.
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we will use a more standard and transparent presentation. Second, it will be clear
that Bourbaki’s definition, which is really a different way of introducing the same
ideas, is fully metamathematical. Indeed, in their final published version, when the
reader finally gets to the definition of a species of structure, he or she reads “A
species of structures in ¥ is a text ¥ formed of. .. (Bourbaki, 2004, 262). Look at
it again: a species of structures is a fext. How should one interpret this sentence? Is
Bourbaki adopting a formalist stance? Notice that it is consistent with Chevalley’s
position with respect to mathematical style: it is a way of writing. It is nonetheless
clear that Bourbaki’s formal set-up has a natural interpretation in a universe of
sets. It is a text with a canonical interpretation. More specifically, a species of
structures has to be given by a formulas in a language, and when interpreted, it
is a set together with relations, etc. But what this clearly indicates is that Bourbaki
is firmly, when he writes this, in mefamathematics and not in mathematics.>° This
is methodologically very important, for it translates concretely the idea contained
in Chevalley’s foregoing quote. It is only in a metamathematical framework that
one can state in full generality the requirement that isomorphic structures satisfy
the same theorems. Moreover, one needs a fully general notion of isomorphism,
something that did not exist when Bourbaki started to define species of structures,
and this point has to be taken as an additional deviation from y. Now, to the
reconstruction. .

We work in ﬁfst order logic. Let X = Xy,..., X,, a finite list of basic set
variables’! and B = By, ..., B, another sequence of parameters. The latter are
necessary to cover cases like vector spaces over a field k£, modules over a ring R,
etc.

Definition 1 An echelon construction on the set variables X1, ..., X,, and param-
eters By, ..., By, is a collection S of terms defined inductively as follows:

1. Eachof X¢,...,X,,By,..., By isin S;
2. If Ay and A arein S, sois A} x A»;
3. If Aisin S, sois P(A).*?

This is a standard inductive definition which gives us terms, that is denoting
expressions, constructed in a systematic fashion.

Thus, an echelon construction S gives us the basic terms that are given or have
to be constructed for the structure of a given kind to be defined. Let us denote an

30 Granted, there is a clear shift in the section on structures. Bourbaki undisputably starts in a
metamathematical framework, but as the section develops and tries to incorporate concepts that
clearly belong to category theory, it morphs into a mathematical mode. It is a case of conceptual
schizophrenia.

31 We follow Bourbaki for the time being and talk about sets. They really are simply formal
variables that will stand for sets. As variables, they are distinct.

32 Some readers might be struck by the fact that we seem to be moving towards a type theory.
Indeed, in many early versions of the theory of species of structures, Bourbaki does work
with types. He progressively abandons the type theoretical terminology in favor of a purely set
theoretical.



8 The Structuralist Mathematical Style: Bourbaki as a Case Study 221

element of an echelon construction S by s; and we will call such an element a sort.
We can now introduce the notions of a similarity type, which was not in Bourbaki
but is standard in logic.

. —>
Let S be an echelon construction and S = sq,...,s, a sequence of chosen
elements of S. These are now called specified sorts.

Definition 2 A signature L = L(X, B, S, R) (or similarity type) is given by:

1. Alist 7() = X1, ..., X, of (basic set-)variables;

2. Alist 79) = By, ..., By, of parameters;
3. A list of specified sorts TS? =S1,...,5p,eachs; € §;
4. A list of relation symbols 75 = Ry,..., Ry, each R; specified as a (sorted)
relational symbol R; C s;, more precisely the arity of R; is R; C si;, X si;, X
X sigy, 33

This is all purely formal. We are just setting up the syntactic framework that allows
us to talk about structures. In fact, we are now in a position to specify what a

) i = = = .
structure for a given signature L(X, B, S, R)is.

Definition 3 An L-structure M is given by the following data:

_) M M M . . . .
1. Atuple X" =X TR & of (not necessarily distinct) sets, the basic sets;
ﬁ
2. Atuple B M — BIM, el B,ﬁ” of sets, the parameter sets;
- . .

3.A wple SM = M ., s;"’ of derived sets; each of these is under-
stood as the set-interpretation of the corresponding echelon term; with
the given sets XM, ..., XM BM ... BM plugged in for the variables
X1i,..., Xy, By, ..., By, respectively;

4. Actual relations RM, ..., R?,” with R;‘” a relation of the type

M M M M .
Ry Cosijy X sijy e X Sija;?
M M
R s

Now, the parameter sets, although arbitrary are fixed for a given structure. We will
make that explicit in the notation.

Let us fix E = B,,..., B,,, the parameter sets. Notice the change in the
notation here: we denote an actual, fixed set by an underline B. We define an £§>-

- = = —

structuretobe an L( X, B, S, R)-structure M where BiM =B;forl <i <n.
So far, we haven’t done anything extraordinary or difficult. We have given a

simple type of L-signature and L-structure. The only original element comes from

the echelon construction underlying both definitions. We hasten to add that this

33 Needless to say, functions can be introduced as special kind of relations, as usual.
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notion of L-structure is not (yet) the notion we are driving at. We still have to impose
a restriction on the latter to get to the notion of a Bourbaki species of structure.
But for that, we need to define isomorphism and isomorphism transfer for £§>-
structures.

Isomorphism and Transport of Structure

— —

We start with two n-tuples of basic sets X! = Xll, R X,i and X2 = X%, e, X,Z,
We assume we are given an echelon construction S and an element s of S. We
now fix the following notation. The interpretations of s, and s, of s is given
inductively as follows:

L If s is X;, then s, is Xi1 and s+, is Xl.z;
2. If s = B;, then 53 = B, forboth j =1, 2;
3.Ifs =851 x SQ,thenSYj = (SI)YJ' X (Sz);gj for j =1,2;
4. If s = P(s'), then 53 = P((s’)?j) for j =1,2.
The foregoing is straightforward bookkeeping and is merely an exercice in notation
and substitution. N
Assume that we are given atuple ¢ = (¢1, ..., ¢,) of bijections ¢; : Xi1 — Xiz,
fori =1, ..., n. The parameters B;’s are not part of the bijection tuple.

—
The bijection-tuple ¢ induces bijections, for every s in S

o5 - ST 5%

in the obvious way, where we use the identity maps 15, : B; — B;.
We can now explain how to transfer an £-structure M to an L-structure N.

%

Let M be an L p-structure with the basic sets X I = x i, R X,ll interpreted
as X {VI oo X ,]1” , respectively and, similarly, let N be an £§> -structure with the

~ 32 2 2 N YA
basic sets X © = X7, ..., X interpreted as X', ..., X', respectively. We use the
bijections ¢; : XM — X to transfer the L -structure M to the L -structure N
as follows.3*
Definition 4
1. For each of the sorts sq, ..., sp,

N .
Sj = (Sj)}’z»

34 These are Bourbaki’s ‘transportable relations’.
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. For each of the relation symbols Ry, ..., Ry, R; C s; with arity R; C Sij, X
Sijp X X iy, We have the interpretation

RM csM M « ... x5
J 11 J»

together with the bijective mappings

Gs. X -+ X ¢y, :s.Xlx‘uxsv =X X ox s X
Sij1 Sijrg Ui ijk i ijk

¢sj :(sj)}’l — (s X2

We define R;V as the image of R;VI C siMl X siMz X - X siﬁ,’[k , R;"I C sj” under
Js Js Jikj

the foregoing bijective mapping. Thus, R ;V necessarily satisfies

RY CsY = (s)5 8.1)

R;-V - (Si,-,l)N X oo X (s,-j‘kj)N,that is (8.2)
N~ X2 X2

RY Csff) oo xsil (8.3)

This definition can be captured by the following diagram:

b
(Sj))_fl = (Sj)_)_f2

where the dotted arrow signifies that it is induced by the given data to make the
diagram commute.

We thus obtain an isomorphism ?45) : M S N thatis completely determined by

. e — . ~ .
the given bijection-tuple ¢ on the basic sets ¢; : X lM = X lN ,i=1,...,n, that

preserves the relations Ry, ..., Rp.

Now let us be given a set-theoretic formula

- = =
(X, R, B)
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with the same free variables as before and no more. We assume that the formula ®
implies, that is contains as conjuncts, the specifications that

R; Cs; (8.4)
R; C Sijq X Sija X ooe X S,’J-ij. (8.5)

<1 3122 328 . L.
We have a standard formula Iso( ¢ X1, RY; X2, R? B) with the distinct free

variables as shown that expresses that ¢ is an isomorphism of the £§> -structures
M and N

¢:M>N

‘e o A >l 32 B2
where M is given by X ' and R and N by X~ and R °. We can now formulate
Bourbaki’s condition of isomorphism invariance:
In the adopted set-theory, it is provable that

=1 21 21 - = 21 202 =90 22 202
Fo(X', R, BYATso(¢; X', R'; X2, R%, B) = ®(X2% R2, B?).

This is, of course, the key component of the whole construction and will be part of
the notion of species of structures.
Bourbaki’s definition of species of structures is now at hand.

Definition 5 A Bourbaki species of structures is given by the £§>—structures whose
relations satisfy the condition of isomorphism invariance. B

The crucial element to notice is that the notion of isomorphism is systematically
built into the definition of species of structures. It is defined for all Eg-structures

before the structure is required to satisfy any condition, any axiom. This is now a
norm for all concepts defined with the axiomatic method: one has to make sure that
the concept is invariant under the proper notion of isomorphism on the technical
sense given above.

We now have one of the main components we were after. Bourbaki’s metamath-
ematical analysis of the notion of abstract structure automatically yields a crucial
component of Bourbaki’s mathematical style. Bourbaki is using the axiomatic
method as a mode of definition, but he adds an essential ingredient to it, namely
the condition of isomorphism invariance. This is not part of the standard axiomatic
method. It was not intrinsic to Hilbert’s axiomatic method, nor was it clear that it
ought to be built into all of mathematics. The notion of abstract structure comes with
the notion of invariance under isomorphism. Again, this is an important deviation
from the standards y .

This has a direct impact on the patterns of inference ¢ that are part of Bourbaki’s
style. Of course, as we have noted, the presentation style is of the form Satz-Beweis
throughout. The logical structure of the proofs and the logical organisation of the
volumes are all explicit. This is all well and good, and indeed is a part of ¢. But
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there is more, and this additional element has to do with the specifically structuralist
component of the style. Although we are in a set-based universe, the species of
structures possess all and only the properties they have as structures. The patterns of
reasonings are therefore constrained to these and only to these. One could therefore
say that the reasonings are, in fact, structure-based. All the steps, all the reasonings
have to be done up to isomorphism.

There is an additional aspect to the style that follows from the analysis-synthesis
method, i.e. the abstract axiomatic method, and this is the use of a certain type
of maximality principle. When one analyses a proof and determines the necessary
and sufficient components to get the proof, one thus synthesizes the most abstract
structure in which the proof is obtainable—relative to the given language and
context. One is therefore naturally lead to axiomatize the most general abstract
concept. This is an additional epistemic feature of Bourbaki’s style, at least from
1935 until the late 1940s, and that has to be included in the §. The patterns of
definition have a direct impact on the patterns of inference and the interactions
k between & and ¢. Thus, Bourbaki introduces, in Bourbaki (1950), the so-
called “mother-structures” and their combinations. The specific mother-structures—
algebraic, topological, order —, although perhaps intriguing and thought provoking,
are epistemically speaking, only secondary. It is the reasoning modes that matter
here and it is these that explain the organization of mathematics that emerges from
the structuralist standpoint.

The organization of the first four chapters of Bourbaki’s General Topology
illustrates Bourbaki’s epistemic style. Chapter One deals with the structure of
topological spaces. Filters and ultrafilters are used to deal with the notion of
convergence. These two latter notions are purely structural and are not defined with
respect to certain numbers and their properties. In the second chapter, the notion
of uniform structure is defined and basically replaces the notion of metric space.
Chapter Three moves to topological groups, the generic example of a genuinely new
structure emerging from the interaction of two abstract structures, and the notion
of uniform structure plays an important role in the presentation. We then move to
topological rings and their completions. Once these structures and their properties
have been studied, Bourbaki finally introduces the real numbers as a topological
group which is the completion of the additive group of rationals. They then extend
the field structure of the rationals to the reals. Thus, the real line is a combination of
a topological, an algebraic and an order structure.

We are now in position to say more specifically how Weil’s way of doing
mathematics diverged from Bourbaki’s style. As we have seen in the foregoing
section, Weil did not always start from the most general abstract structure and move
down to the more specific context he was interested in. Indeed, instead of adopting
a maximality principle with respect to abstract structures, one could claim that
Weil adopted a minimality principle instead. Indeed, as Zariski had noticed in his
review, Weil restricted himself to the ‘simplest facts about abstract fields and their
extensions and the bare rudiments of the theory of ideals’. In contrast, Bourbaki
uses modern algebra and abstract structures in general ‘to the fullest possible
extent’. Furthermore, in his approach to the foundations of algebraic geometry,
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Weil did not take into account the idea of working with structures that are invariant
under isomorphism. In fact, Weil was recalcitrant towards the idea of automatically
attaching a type of morphism to a species of structures. Indeed, in his Corry (1996,
380), Corry quotes a letter from Weil to Chevalley:
As you know, my honorable colleague Mac Lane claims that every notion of structure
necessarily implies a notion of homomorphism, which consists in indicating for each

data constituting the structure, those which behave covariantly and those which behave
contravariantly [...] What do you think can be gained from this kind of considerations?

Weil, interestedly, was also opposed to categories in general and, perhaps, just
for this reason.

Categories and Species of Structures

Of course, Bourbaki species of structures are based on sets even though a species
of structures does not automatically come with a set-theoretic notion of morphism.
Indeed, Bourbaki explicitly rejects this possibility in the final version of the chapter
on structures: “A given species of structures therefore does not imply a well-
defined notion of morphisms.”(Bourbaki, 2004, 272). Bourbaki did not find a way to
incorporate categories in their definitions and, with hindsight, many members came
to the conclusion that Bourbaki’s analysis came short.>

Of course, one of the main problems was that some categories cannot be sets.
And if one allows for the existence of classes, then problematically there are some
operations on categories, e.g. functor categories and functors between those, that are
not legitimate. But there is more, and it is important to understand this point. When
Bourbaki was thinking about these problems, category theory had not attained its
full maturity. In particular, the proper notion of isomorphism for categories had
still not been identified properly. Indeed, it appeared in press for the first time in
Grothendieck’s (1957), and even then it was not properly defined. Thus, to cover
categories properly, and in particular, to cover categories in a structuralist fashion,
in Bourbaki’s style, required a change in the metamathematical analysis and the
metamathematical framework. The fact is, categories are more abstract than set-
based structures and in that framework, category-based structures have to be defined
up to equivalence, not up to isomorphism. Two frameworks deal explicitly with
these levels of abstraction and so can be readily employed for reconstructing the
structuralist style, namely Makkai’s FOLDS, as in Makkai (1998), and Homotopy
type theory with the univalent axiom, as in Collective (2013).

Thus, we claim that even for categories Bourbaki’s structuralist style is entirely
clear and legitimate. The main components of Bourbaki’s style are a direct

35 For instance, see Dieudonné (1970) and Cartier (1998) for their evaluation of the situation. See
Corry (1996, 2004) and Kromer (2006, 2007) for a more general analysis. Unfortunately, we still
don’t have access to all the documents of that period which would allow us to better understand
how and why Bourbaki failed to include categories in their enterprise.
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consequence of their metamathematical analysis of abstract mathematical structures
and, in a sense, the style provides a set of norms that guide mathematicians both
globally, with the overall organization of mathematics, and locally, with the patterns
of definition and patterns of proof.

8.3.4.4 Doing Mathematics Up to Isomorphism: Bourbaki’s Legacy

Nowadays, pure mathematics is done up to isomorphism. Bourbaki’s style has
become the norm, the standard. It is not questioned. It is a new norm. Students
of pure mathematics are taught mathematics that way. We simply do not explicitly
see it as their method;*® we do not have to. The previous styles could have prevailed;
likewise, the Bourbaki style could disappear.’”

Every field is based on a structure or a combination of structures. Theorems
are proved by establishing properties of structures and relations between structures.
One gets to classical results by combining and specifying various structures. The
whole organization of mathematics is turned upside down. The whole ontology of
mathematics is revised.’® Numbers, geometric figures, etc., are now elements of
structures, more or less abstract. The (conceptual) foundations of mathematics—in
contrast with the logical foundations of mathematics—are now made up of monoids,
groups, rings, modules, fields, vector spaces, topological spaces, measure spaces,
partial orders, etc. By specifying properties of those, one gets more structures, and
their combinations give rise to genuinely new structures.

When one does mathematics a la Bourbaki: one identifies the appropriate
abstract structures involved in a given context; one looks at the theorems about
these structures that are relevant to the given problem; one applies these theorems
appropriately and solves the problems by using all and only the abstract properties
needed. It is highly abstract. It is elegant. It is clean. It is rigorous. But it is awfully
hard, for one needs to learn all about these abstract structures and know how and
when to use them. Sometimes, it seems unnecessary, uselessly abstract. Does one
need to use a theorem about locally compact abelian groups to prove Plancherel’s
theorem about Fourier transforms of certain functions on the real line? Of course

36 The status of the alleged proof of the ABC conjecture by Mochizuki rests on a subtle discussion
regarding isomorphisms and identities, the abstract and the concrete! See http://www.kurims.
kyoto-u.ac.jp/~motizuki/SS2018-08.pdf, Sect. 8.2.

371t is certainly evolving. Grothendieck and his school have contributed to this change. The
structuralist style nowadays includes categories, functors and working up to equivalence of
categories. The introduction of higher dimensional categories makes the style even more abstract
than it was.

38 We use the term ‘ontology’ in its traditional philosophical sense. We could also use it in its
modern, engineering sense of classificatory principle. It is quite interesting to see the evolution of
the organization of the field and compare, say how mathematical disciplines were organized around
1920 and in the 1960s. In the sense of a classification of disciplines, the mathematical ontology
has radically changed with Bourbaki’s work.
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not. Plancherel certainly did not prove his theorem by using the structure of locally
compact abelian groups. Proceeding that way is sometimes seen as a form of
intellectual terrorism or a form of elitism. To some, it is repelling. But it can be
done this way and there are cognitive benefits to doing so.

8.4 The Structuralist Style

Bourbaki’s style is an instance of what might be dubbed the ‘structuralist style.’
Using our definition of mathematical style, we submit that the structuralist style is
based on these interrelated components.

1.

Patterns of definition for abstract structures. Bourbaki naturally used the
axiomatic method. He was well aware that the term ‘axiom’ does not refer
to its usual epistemological sense. One merely needs a systematic procedure to
list properties, relations and how they are connected with one another. Sketches
could be used and in the context of higher dimensional categories, might very
well be used. We assume that the structures are abstract simply because they
have been abstracted from previously given mathematical contexts.>

. These patterns of definition have to include criteria of identity for the abstract

structures. Bourbaki helped clarify the general notion of isomorphism for species
of structures. At the time, it was the natural criterion of identity to define
and use. Nowadays, we know that we need homotopy equivalence, categorical
equivalence and higher dimension equivalences. Mathematics is done up to a
certain type of isomorphism, the latter being derived from the abstract structures
one is working with.

. An appropriate logical framework is needed to codify the inference patterns

inherent in these abstract structures. In a sense, first-order logic was designed
specifically to tackle set-based abstract structures. First-order logic, set theory
and Bourbaki’s structuralism co-evolved from the 1910s until the 1950s. It
allowed Bourbaki not only to specify what a structure was, but more importantly
what is meant to do mathematics ‘up to isomorphism’. Bourbaki required that
the properties and relations used to define structures be ‘transportable’, which
is to say that they are invariant under isomorphism. More precisely, Bourbaki
required that any property P (and relation) present in the axioms of a species
of structure S, satisfy the following structuralist principle: for all X of type S, if
P(X)and X ~ Y, then P(Y), where the relation X ~ Y is the appropriate notion
of isomorphism for this species of structure. Nowadays, depending on one’s
needs and goal, one could use Makkai’s FOLDS or homotopy type theory. The
main point is that these logical frameworks also satisfy the structuralist principle.

39 Thus, in this sense, being abstract is a relative property and is not opposed absolutely to being
concrete.
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These two might also be the first steps towards a different system that still has yet
to be defined, but that would be designed as to satisfy the structuralist principle.

4. A systematic framework to combine and compare these abstract structures.
Again, the axiomatic method together with the notion of isomorphism played that
part in Bourbaki’s case. It quickly turned out to be inadequate, for the language
of categories and functors was more effective and systematic, although more
abstract.

Many philosophers of mathematics have claimed that Bourbaki’s structuralism
had nothing to do with what the philosophers call ‘mathematical structuralism.’
We have, in a companion paper (Marquis, 2020), argued that those philosophers
have misunderstood Bourbaki’s structuralism. Bourbaki is unfortunately responsible
in part for this state of affairs. We will not rehearse our arguments here. One
of the reasons given is that Bourbaki’s technical notion of (species of) structure
was basically flawed and so was mathematically useless. We disagree with this
evaluation, our current claim is clear: Bourbaki exemplifies a mathematical style.
And anyone interested in the epistemology of mathematical practice should pay
attention to its implications for how we reason in mathematics.
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Chapter 9 )
Grothendieck Toposes as Unifying Qs
‘Bridges’: A Mathematical

Morphogenesis

Olivia Caramello

Abstract We present some philosophical principles underlying the theory of topos-
theoretic ‘bridges’, introduced by the author in 2010 and further developed and
applied in the subsequent years.

Keywords Unification - ‘Bridge’ - Invariant - Sheaf - Topos - Site -
Equivalence - Duality - Symmetry - Translation

9.1 Introduction

In this paper our aim is to expose some of the philosophical principles underlying
our view of Grothendieck toposes as unifying ‘bridges’ between different math-
ematical contexts or theories. This view first emerged in Caramello (2010) and
was further developed both theoretically (see Caramello 2017) and in relation to
specific applications in different fields of Mathematics throughout the past years;
see Caramello (2016a) for an overview of the main results obtained so far by
applying this methodology. Thanks to these bridges, we can effectively relate —
often in profound and unexpected ways — notions, properties and results of different
mathematical theories that may well belong to seemingly distant fields and look
disconnected at a first glance. In other words, these techniques enable us to multiply,
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in a sense, points of view on a given problem and to discover hidden relations
between distinct mathematical contexts.

A clarification on terminology is needed. In this text, we shall widely use the
term ‘object’ not (only) in the technical sense of category theory, but to refer to any
entity, whether abstract or concrete, considered in the context of our methodology.
So an ‘object’ could be a notion, a concept or also a concrete entity belonging to
the ‘real’” world. Similarly, our use of the term ‘construction’ or ‘building’ of new
objects from given ones should not be intended concretely, as it can refer to an
abstract way for associating new objets with given ones (as it is indeed the case
in the context of topos-theoretic ‘bridges’), not necessarily in a constructive way.
When we say ‘topos’, we always mean ‘Grothendieck topos’.

Before proceeding to describe how the ‘bridge’ technique is implemented in the
context of toposes, we shall clarify the sense in which we shall talk about unification
and introduce the general concept of a ‘bridge’ object, as it has been inspired by
these mathematical investigations. For examples of ‘bridges’ of non-mathematical
nature, we refer the reader to Caramello (2016b, 2018), while an illustration of
selected topos-theoretic ‘bridges’ is provided by Caramello (2016a).

Lastly, a disclaimer. While the general idea of a ‘bridge object’, as presented in
Sect. 9.3, does not even require a mathematical background to be understood, our
comments on its implementation in the context of toposes can hardly be appreciated
without a basic knowledge of the language of category theory. As an introduction to
this subject, we recommend the classical but still excellent book Mac Lane (1971)
by S. Mac Lane. Readers interested in the philosophical and historical aspects of
category theory may consult (Kromer, 2007; Marquis, 2010; Mazur, 2008).

9.2 What Does ‘Unifying’ Mean?

There are two different main significations to the concept of unification. One
usually refers to a unifying framework as a general context subsuming a number
of particular instances. So, for example, the concept of a category is unifying in
the sense that concepts as different as that of a preorder or that of group can all
be seen as particular cases of it. Similarly, the language of set theory (in one or
another of its standard formalizations) is unifying in that one can ultimately express
all mathematical concepts in terms of sets.

Still, one immediately realizes that this kind of unification, based on general-
ization, is static in the sense that being able to fit different objects in one context
does not provide by itself a means for transferring knowledge between them. For
example, knowing that the notions of preorder and of group are both particular
cases of the notion of category does not give by itself a tool for transferring results
about preorders to results about groups (or conversely), since such results are not
necessarily specializations of general results about categories in these two contexts;
in fact, the most interesting theorems about preorders or groups are not of this
form, since they exploit in a non-trivial way the specific characteristics of the given
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objects, i.e. precisely the aspects of them that are lost in the generalization! This
illustrates the fact that, in a generalization, the diversity of the single objects is not
at all valorized, but rather ‘forgotten’. In fact, any abstraction process consists in
focusing the attention on a limited number of aspects of the given situation at a time,
and drawing inferences exclusively on the basis of them, temporarily forgetting all
the other ones (see also Sect. 9.11 below for more on abstraction in mathematics).

It is therefore natural to wonder if it is possible to achieve a more substantial
form of unification which takes into account the diversity of the single objects in a
significant way, rather than ‘diluting’ it in a generalization, and which is dyramic in
the sense of allowing non-trivial transfers of information between the objects. One
would want a unification that not only valorizes the diversity of the given objects
but possibly explains its origin in relation to a unity lying somewhere else, as in a
sort of morphogenesis.

Our (positive) answer to these questions involves the notion of a bridge object.
We shall discuss for simplicity the construction of ‘bridges’ across two given
objects, even though the technique, as it will be clear, is applicable to arbitrarily
big collections of objects.

9.3 The Idea of ‘Bridge’

When we compare two objects with each other, we are interested in identifying
the invariants, that is, the aspects that they have in common despite their diversity.
These aspects can sometimes be identified in a concrete way, that is without the
need to go out of a (relatively restricted) environmnent in which the objects lie. But
most often, it is necessary to adopt novel points of view on the two objects capable
of enlightening their (more or less hidden) invariants. This is what ‘bridge’ objects
can achieve.

We can define a bridge object connecting two objects a and b as an object u
which can be constructed from (or associated with — not necessarily in a concrete
sense), from any of the two objects (independently from each other) and admits
two different ‘presentations’ f(a) and g(b) (typically expressing the ways in which
u is ‘built’ respectively from a and from b), in the sense that there is some kind of
identification (in mathematics this is typically formalized as an equivalence relation)
=~ both between u and f(a) and between u and g(b).

Such a ‘bridge’ object u allows us to build ‘bridges’ allowing transfers of
information between a and b, as follows. For any property or notion applicable to u
which is invariant with respect to the relation >, one should attempt to ‘translate’ it
into a property or notion applicable to the object a (resp. to the object b) by using
the presentation f(a) (resp. g(b)) of the bridge object u in terms of the object a
(resp. b).
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For instance, in the case of an invariant property P applicable to u, one looks
for logical relationships of the kind ‘f(a) satisfies P if and only if a satisfies a
certain property P,’ and ‘g(b) satisfies P if and only if b satisfies a certain property
Qp’; in such a situation, one gets a logical equivalence between P, and Qp, since
both properties correspond to the same invariant property P of the bridge object, but
understood from the points of view of the objects a and b via the presentations f(a)
and g(b) of u. Notice that, since a and b can be objects of very different nature,
the properties P, and Qj can be concretely very different, in spite of the fact that
they represent different manifestations of a unique property, namely P, of the bridge
object u.

Our notation f(a) and g(b) for the different presentations of the bridge object
u is motivated by the mathematical applications, where these presentations of u are
typically the result of applying some functions f and g respectively to a and to b.
In general, though, f(a) (resp. g(b)) may be any object associated with a (resp.
b) by means of some kind of ‘assignment’, ‘procedure’ or ‘construction’ f (resp.
g). In most cases, the passage from a (resp. b) to f(a) (resp. g(b)) will involve
a loss of information about a and b; that is, in general, one will not be able to
‘reconstruct’ (the whole of) a (resp. b) from f(a) (resp. g(b)). Still, some essential
information about a and » must be retained in this passage for non-trivial bridges to
be established.

Bridge objects are in a sense universal invariants, since, almost tautologically, all
the invariants considered on them ‘factor’ through them. In general, every bridge
object supports infinitely many invariants (as any ‘genuine’ property of a bridge
object is, essentially by definition, an invariant). Any invariant allows to transfer
different information, behaving like a ‘pair of glasses’ capable of ‘discerning’
(or ‘unveiling’) hidden connections ‘coded’ in the equivalence between the two
presentations of the bridge object. Of course, each of these transfers of information
is partial, since each invariant embodies only some of the aspects that the two objects
have in common. Ideally, in order to achieve a full transfer of information, one
would need to consider all the possible invariants, and therefore all the possible
bridge objects (and higher-order architectures involving them) connecting the two
given objects.

The complexity of the ‘unravelings’ of properties of the bridge objects in terms
of properties of its presentations (when they are at all feasible, in a non-tautological
way) may vary enormously from case to case, depending on the sophistication of
the invariant considered on u and on that of the constructions of the bridge object
u from the two objects a and b. Still, the kind of unification realized by such a
method is much more substantial than that achieved by a generalization. Indeed, the
diversity of the two objects a and b is no longer ‘forgotten’, but becomes directly
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responsible for the different forms in which the invariants defined at the level of
the bridge object manifest. So, we have a sort of morphogenesis which explains the
origin of the diversity of different expressions of the same invariant.

Notice that in the ‘bridge’ technique, it is not the objects themselves to be unified,
but their properties, or notions involving them. In other words, the unification takes
place at an higher, more abstract level than that of the two objects. In fact, we have
used the metaphor of the ‘bridge’ to underline the fact that we have two distinct
levels, that of the objects to be investigated in relation to one another, and that of the
bridge objects susceptible of connecting them.

It is important to bear in mind that a ‘bridge’ object may have a completely
different nature from those of the objects which it relates to each other; the two levels
do not in general collapse to a single one. The ‘flat” bridges (i.e. those in which two
levels can be identified) are the relatively uninteresting ones, since they correspond
to the situations where the two objects can be directly connected to each other, and
in which the unification boils down to ‘homogeneisation’. In fact, in the context of
theories with the same semantic content connected to each other by their common
classifying topos (acting as a ‘bridge’ object between them), the pairs of theories
that can be connected directly to each other are those which are bi-interpretable (in
the sense of having equivalent syntactic categories), that is between which there
exist ‘dictionaries’ (provided by the bi-interpretation) allowing to directly relate
their syntaxes (cf. section 2.2 of Caramello 2017).

Any ‘bridge’ connects two levels, which can be thought of as the level of the
‘contingent’ (or ‘concrete’), to which the objects to be unified belong to, and that
of the universal (or ‘abstract’), where bridge objects and the invariants defined on
them lie.

The ‘bridge’ technique notably provides an approach to the problem of classify-
ing invariants with respect to a given equivalence relation, and obtaining canonical
representatives for the equivalences classes. Indeed, suppose that one wants to
compare two objects a and b belonging to a set / on which an equivalence relation
~ is defined. In such a situation, it is important to identify (and, possibly, classify)
the properties of the objects of [ that are invariant with respect to the relation
~7, since any such property will allow a transfer of information between a and
b. Depending on the cases, this can be an approachable task or an hopelessly
difficult one. In fact, a relationship between two given objects is in general an
abstract entity, which lives in an ideal context which is generally different from
the restricted, ‘concrete’ environment in which one typically considers the two
objects (note that, even when the objects themselves are abstract, a relationship
between them lies at a higher level of abstraction since it requires a higher degree
of logical complexity to be formalized). It thus becomes of crucial importance to
identify more ‘concrete’ (that is, ‘easier to represent’ or to investigate’) entities
which could act as ‘bridges’ connecting the two given objects, by representing in
particular their common equivalence class in a form which is as ‘concrete’ (again, in
the sense of * manageable’, or ‘easily representable by the human mind’) as possible.
Think for instance of the complex plane, which is formally defined as the quotient
R[x]/(x? + 1), but whose elements can be concretely represented as pairs of real



238 O. Caramello

numbers, or to the set Q of rational numbers, defined as a quotient of the product
Z x Z* (where Z* denotes the set of non-zero integers), whose elements, which are
equivalence classes, admit as canonical representatives the reduced fractions whose
numerator (or denominator) has a fixed sign.

For this, the concept of invariant construction is relevant. We define an invariant
construction f : (I,~j) — (O, ~p) between sets I and O on which are defined
equivalence relations ~; and ~¢, as a function f : I — O which respects
the equivalence relations (i.e., such that whenever x ~; y, f(x) ~o f(¥)). An
invariant construction f is said to be conservative if it reflects the equivalence
relations (i.e., whenever f(x) ~o f(y),x ~7 ¥).Insuch asituation, a bridge object
connecting two objects x, y € I will be an object u € O such thatu ~p f(x) and
u ~o f(y).If f is a conservative invariant construction (I, ~;) — (O, ~¢) then
bridge objects in O notably represent equivalence classes of objects of / modulo
the equivalence ~;.

Of course, the usefulness of such bridges greatly depends on whether it is more
manageable to work with objects of type O than with objects of type I, or when
the relation ~¢ is more tractable than the relation ~j. Still, experience (both in
mathematics and in other sciences) shows that, in the majority of situations, one
needs, in order to effectively connect two objects of 7, to move from the level of /
to the level O of another object being able to serve as a ‘bridge’ across them (see
also Sect.9.11 for a discussion of this point in the context of the topos-theoretic
‘bridge technique).

We anticipate that, in the context of our topos-theoretic ‘bridges’, the objects a
and b to be investigated in relationship with each other will be specific mathematical
contexts (represented as sites, theories or other objects from which toposes can be
constructed), and f(a) and g(b) will be toposes attached to them which capture a
‘common essence’. The ‘bridge’ technique can be notably applied in the context
of theories classified by the same topos, for transferring information across them.
Recall (Makkai and Reyes 1977) that any mathematical theory of a very general
form (technically speaking, a geometric theory) admits a classifying topos, which,
by definition, classifies its models in arbitrary toposes and thus embodies its
semantic content (see also Marquis (2010) for an excellent conceptual introduction
to categorical logic). Two theories are classified by the same topos (i.e. are Morita-
equivalent) when, broadly speaking, they describe the same structures in their
respective (possibly very different) languages. As we shall see in Sect. 9.6, the
construction of the classifying topos defines a conservative invariant construction
from the collection of geometric theories (endowed with the notion of Morita equiv-
alence) to that of Grothendieck toposes (endowed with the notion of categorical
equivalences of toposes), and classifying toposes can effectively act as ‘bridge’
objects across Morita-equivalent theories.

Examples of ‘bridges’ outside mathematics are discussed in Caramello (2016b,
2018).
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9.4 Sheaves, or the Passage from the Local to the Global

Grothendieck toposes (Artin et al. 1972) are, by definition, categories (equivalent to
a category) of sheaves (of sets) on a site. The notion of site arises from an abstraction
of the notion of covering of an open set by a family of open subsets in a given
topological space, and represents the most general categorical context for defining
sheaves. The notion of sheaf on a topological space was introduced by J. Leray: a
sheaf on a topological space X is a way of assigning to each open set U of X a set
F(U) and to each inclusion between open sets V. € U amap py,y : F(U) —
F(V) in such a way that py y = 1F(y) for each U and pw v o pyv,yv = pw,u for
each W C V C U (these are the conditions that define the notion of presheaf on X)
plus the requirement that, for any open covering of U by a family {U; | i € I} of
open subsets U; € U, giving an element of F(U) corresponds precisely to giving a
family {x; € F(U;) | i € I} of elements of the F(U;)’s which is compatible in the
sense that pz y, (x;) = PZ,U; (xj) for each i, j € I and any open set Z contained
both in U; and in U;.

The canonical example of a sheaf on a topological space X is that of continuous
real-valued functions, which assigns to each open set of X the set of continuous
real-valued functions on U and to each inclusion V' € U between open sets the
operation of restriction of such functions on U to V.

Categorically, a presheaf is simply a functor from the opposite of the category
O(X) of open sets of X (whose objects are the open sets of X and whose arrows are
the inclusions between them) to the category of sets.

Sheaves on a topological space X can be defined as presheaves satisfying the
above gluing condition, which can be expressed categorically entirely in terms of
the category O(X) and of the notion of covering family {U; < U | i € I} in this
category.

A (small) site is a pair (C, J) consisting of a (small) category C and a so-called
Grothendieck topology J on it, which specifies a notion of ‘covering family’ of
arrows in C, with respect to which one can formulate a sheaf condition.

A presheaf on a category C is simply a contravariant functor from C to the
category Set of sets. Given a Grothendieck topology J on C, a presheaf P on C
is said to be a J-sheaf if it satisfies the glueing condition with respect to every
compatible family of elements of P indexed by a J-covering family; see Mac Lane
and Moerdijk (1992) for the details. The category of J-sheaves on C and natural
transformations between them is denoted by Sh(C, J). A Grothendieck topos is any
category £ equivalent to the category Sh(C, J) of sheaves on a small site (C, J).

The notion of sheaf expresses a very robust and harmonious relationship between
the local and the global. It formalizes the process by which one defines a global
entity by specifying its local behaviour on objects covering its domain. For instance,
one can define a continuous real-valued function on an open set U of a topological
space X by pasting together continuous real-valued functions f; : U; — R defined
on sub-open sets U; covering U which are compatible with each other (in the sense
that they agree on the intersections of the U;’s).
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Notice that every set of local data which comes from a global entity by a
process of ‘instantiation’ satisfies some coherence conditions; for example, given
a continuous function f defined on an open set U of a topological space, if we
define fy as the restriction of f to an open subset V C U and fw as the restriction
of f to an open subset W C U, then we have the coherence relation fy|z = fw|z
for any open subset Z € VNW. The definition of sheaf requires the converse also to
hold: any set of compatible local data should uniquely determine a globally-defined
datum.

The theory of descent data is another (higher-categorical) illustration of the same
principle of defining global entities by gluing compatible sets of local data.

Although sheaves might appear very abstract at first sight, they are actually real in
a very strong sense. What is reality if not a sheaf of coherent perceptions? Note that
we tend to call ‘real” anything which is ‘independent from’ (in the sense of ‘invariant
with respect to’) the perceptions that we might have of it. The reason why we believe
in the existence of reality (if we do) is that we continuosly experience coherence
relations existing between the perceptions of different individuals or measuring
instruments; it is therefore scientifically reasonable (as a minimalist explanation) to
suppose the existence of something which would ‘generate’ (by its mere existence)
all these perceptions and hence which would be ontologically responsible for the
coherence relations between them.

9.5 Grothendieck Toposes

A general sheaf is by itself a rather rich entity since is specifies not only a
fixed, global datum but a whole collection of local data which are compatible
with each other. Considering all sheaves on a given site to form a category,
namely a Grothendieck topos, adds even more coherence relations arising from the
‘interaction’ between different sheaves. It is thus clear that a Grothendieck topos
is an extremely rich entity. Indeed, any topos is a veritable mathematical universe
within which one can do mathematics and in particular consider models of arbitrary
first-order (and even higher-order) theories.

As a mathematical universe, every topos has its own internal logic, which in
general is not classical but intuitionistic and with multiple truth values, reflecting
the fact that the notion of truth accommodated by sheaves is local and variable
(according to the domain of a generalized element), rather than global and fixed.
As far as its internal structure is concerned, a Grothendieck topos satisfies all the
completeness properties one might hope for: every universal problem (expressible
in terms of existence of limits or colimits) has a solution in a topos, because
of its categorical completeness and cocompleteness. Moreover, any topos has
exponentials (which are the categorical analogue of the sets of functions from one
given set to another), a subobject classifier, which encodes much of its internal logic,
separating sets and coseparating sets.

These categorical properties have a number of remarkable consequences: every
functor between toposes which preserves all limits (resp. colimits) has a left (resp.
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right) adjoint; in particular, every covariant (resp. contravariant) functor from a
Grothendieck topos to the category of sets which preserves limits (resp. which
sends colimits to limits) is representable. All of this shows that toposes are ideal
concepts to be used for building unifying ‘bridges’ across different mathematical
contexts since they ‘accommodate’ (in the sense of being natural homes for) many
objects arising as the solution of universal problems; a typical example is the notion
of universal model of a geometric theory within its classifying topos. Moreover,
this very rich categorical structure is responsible for the fact that toposes are full
of symmetries or, in other words, that they naturally support a great number of
invariants.

Grothendieck toposes are also stable with respect to many significant operations
that one might want to perform on them; the 2-category of toposes is itself very rich.
In particular, the theory of Grothendieck toposes supports relativisation techniques,
since the topos of sheaves on a site internal (or relative) to a base Grothendieck
topos is again a Grothendieck topos. Being able to change the base topos according
to one’s needs and to switch from an ‘internal’ to an ‘external’ point of view
when dealing with toposes in relation to one another is a classical technique that
adds further power to the theory (much as Grothendieck’s relativisation techniques
have played a key role in his refoundation of algebraic geometry in the language
of schemes) and naturally leads to the discovery of a great number of different
presentations for the same topos.

In a sense, the ontology of toposes is very large. Every mathematical theory,
even a contradictory one, finds its home in the context of toposes (note that this is
not true in the restricted context of sets, where a contradictory theory does not have
any models); in fact, a geometric theory is contradictory if and only if its classifying
topos is trivial (in the sense that it is the topos 1 having one object and one arrow
on it). Note that, whilst being trivial, this topos does indeed contain a model of the
theory, namely its universal model. This is very relevant both from a conceptual
and a technical viewpoint; indeed, not having to worry whether something exists
allows for a much greater technical flexibility. The problem is no longer whether
the object we would like to construct exists or not; in the world of toposes, in a
sense, all problems (of a specified but very general kind — think for instance of the
existence of limits or colimits for small diagrams) admit a solution, so the ‘absolute’
problem of the existence of a desired entity gets reduced to a ‘relational’ problem,
that of whether we can transport the ‘universal’, topos-theoretic solution to a set-
theoretic or more concrete structure suitable for our needs (think, as an example, of
the topos-theoretic construction of forcing models for set theory). Notice that this
very large ontology manifests itself both at the level of the individual objects of
toposes, namely sheaves and at the global level of the entire universe of sheaves on
a given site, that is, at the level of a given topos, in addition to the level of the (very
big) 2-category of toposes.

The ‘completeness’ of the world of toposes is also reflected in the fact, already
hinted at above, that all the functors between toposes that satisfy the necessary
conditions for being representable (resp. for admitting a left or right adjoint) are
indeed representable (resp. do admit such a left or right adjoint).
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Another very relevant aspect of toposes is their amenability to computation. Any
Grothendieck topos is, in a sense, a mathematical environment without ‘holes’, by
virtue of the completeness properties it enjoys; this makes it very convenient for
calculations, since one can exploit all its internal symmetries for carrying them
smoothly and effectively, never having to worry whether the result of this or that
categorical operation exists or not. On the other hand, one does not go far astray
by computing in a topos, since, following the ‘bridge’ philosophy, one can always
interpret the results of these computations in terms of relevant presentations for the
given topos.

9.6 The Yoneda Paradigm

Recall that a functor from a category C to a category D is a way of assigning to each
object of C an object of D and to each arrow of C an arrow of D so as to respect
identity arrows and the operations of domain, codomain and composition of arrows.

We can think of a functor as a carrier of information which is indexed by the
objects and arrows of the domain category. In particular, a presheaf P on a category
C, which by definition is a contravariant functor from C to the category Set of sets,
sends any object ¢ of C to a set P(c) and any arrow f :d — cinCtoamap P(f):
P(c) = P(d). As such, a presheaf is in general a carrier of a significant amount of
information. Any object co of the category C determines a presheaf on C, denoted
by Hom¢ (—, cp), which sends an object ¢ of C to the collection Homg¢(c, ¢g) of
arrows in C from ¢ to ¢g and sends an arrow f : d — c¢ in C to the function
Homg¢ (¢, cg) — Home(d, co) between these home sets given by composition with
f on the right.

Recall that a presheaf P is said to be representable if it is (up to isomorphism)
of the form Homg(—, ¢g) for some object ¢y of C. This means that there is an
element xg € P(cp) which ‘generates’ all the elements of P in the sense that for any
object ¢ of C and any element x € P(c) there is a unique arrow ¢ — c¢o such that
P(f) : P(co) = P(c) sends xg to x. When a functor is representable, this means
that all the information carried out by it is actually concentrated in a single object,
namely the pair (cg, xo) representing it. If the functor carries a lot of information,
proving its representability is a significant result, since it shows that the functor has
a sort of ‘center of symmetry’, given by its representing pair, which generates by
‘deformation’ all its elements associated with arbitrary objects of the category.

The assignment c¢o — Hom¢ (—, co) can actually be made into a functor

ye : C — [C°P, Set],

called the Yoneda embedding of C into the category [C°P, Set] of presheaves on
C. This functor is full and faithful; in particular, it reflects isomorphisms. This
shows that an object ¢ can be identified with the corresponding representable functor
Hom¢ (—, ¢), whose elements are the arrows from arbitrary objects of C to ¢. These
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arrows are called the generalized elements of c; this terminology is justified by the
fact that, in the category Set of sets, any element of a set ¢ can be identified with an
arrow 1 — c in Set, where 1 is the singleton set {x}. A generalized element of an
object ¢, as an arrow to ¢, thus defines a point of view on c, or better a ‘direction of
observation’ of ¢ within the category C. We can thus interpret the above result by
saying that an object can be identified with its generalized elements, that is, broadly
speaking, with the collection of points of view that we can have on it. We call this
the Yoneda paradigm.

Notice that, in this context as well, there are coherence relations between the
points of view that one can have on a given object: for instance, any arrow b — a
in C canonically induces a way of mapping the generalized elements of ¢ defined
on b to the generalized elements of ¢ defined on a. These notions suggest that,
in general, whenever one experiences coherence relations, one should look for
the ‘source’ of them, possibly in the form of a representing pair for a functor
encoding such relations (see also Sect.9.7 below). As we argued in Sect. 9.4, the
language of sheaves is particularly apt to formalize local-global coherence relations.
Grothendieck had the key idea of considering all sheaves on a given site to form his
toposes, supported by the conviction that, since each of them behaves as a sort of
“ meter!” of the site, it is all the more powerful to consider a measure instrument
not in an isolated way but in connection with all the other measure instruments that
one might want to dispose of. This in fact leads to a whole universe of coherence
relations, namely a topos.

The identification of the objects ¢ of a category C with their functors Home (—, ¢)
of generalized elements realized by the Yoneda embedding is very relevant also
from a technical viewpoint, since it allows to understand constructions internal to
the category C in set-theoretic terms. For example, since the Yoneda embedding
yc : C — [C°P, Set] preserves and reflects all limits, limits in C can be understood
in terms of limits in the corresponding presheaf topos [C°P, Set], which are in turn
calculated componentwise in terms of the relevant limits in Set.

The Yoneda lemma has a beautiful incarnation in the context of toposes,
which provides a further illustration of their natural symmetries and completeness
properties. Every Grothendieck topos £ can be endowed with a Grothendieck
topology Jg', called the canonical one, whose covering sieves are those which
contain small epimorphic families; this is the largest Grothendieck topology on £
for which all the representable functors are sheaves. Now, the Yoneda embedding
ve : £ — [E°P, Set] yields an equivalence

€ =~ Sh(E, J&™)

between £ and the category of sheaves on this (large in general, but always small-
generated) site. This result can be profitably applied not only for understanding

1 See section 2.12 of his work Récoltes et Semailles.
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limits in &, but also for describing non-trivial constructions in &, such as colimits,
in terms of generalized elements of objects of £.

Finally, we remark that the theme of representability plays a key role in
connection with the topos-theoretic ‘bridge’ technique. Indeed, the classifying
topos of a geometric theory can be defined as a representing object for the
(pseudo)functor of models of the theory; its generalized elements (within the
category of Grothendieck toposes) are the categories of models of the theory in
arbitrary toposes. The Yoneda paradigm thus tells us that a Grothendieck topos can
be identified with the (pseudofunctor of) structures that it classifies. In particular,
it contains a distinguished model of the theory, called its universal model, which
‘generates’ all the models of the theory in arbitrary toposes:

Classifying topos

In the picture, the big coloured shapes represent different toposes while the inner
lighter shapes represent models of a given theory inside them; in particular, the
dark yellow star represents the classifying topos of the theory and the light diamond
represents ‘the’ universal model of the theory inside it. The classifying topos thus
resembles to a ‘sun’ generating shadows in all directions; when we look at particular
models of the theory in toposes, we are just contemplating deformations of this
universal model by means of structure-preserving functors (technically speaking,
inverse images of geometric morphisms of toposes), a bit as if we were in Plato’s
cave.

By definition of classifying topos, two theories are Morita-equivalent (i.e. they
have equivalent classifying toposes) if and only if they have equivalent categories
of models in any topos, naturally in the topos, that is, broadly speaking, if they
describe, each in its own language, the same structures, or, in other words, if
they have the same mathematical content (embodied by the common classifying
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topos). Notice that the classifying topos construction constitutes a conservative
invariant construction (in the sense of Sect. 9.3) from the world of geometric theories
endowed with the relation of Morita equivalence to the world of Grothendieck
toposes endowed with the relation of categorical equivalence; one can then under-
stand, given the fact that the notion of categorical equivalence is much more
technically tractable than Morita equivalence (for instance, one can easily see
whether a property is a categorical invariant, and introduce infinitely many new
categorical invariants without any effort), the crucial role that classifying toposes
can play as ‘bridges’ across Morita-equivalent theories.

9.7 Generation from a Source

There are different senses in which one can understand the idea of ‘generation from
a source’ which we hinted at in Sect. 9.4. We shall be concerned in particular with
two of them. The first is the Yoneda paradigm of representable functors, discussed in
Sect. 9.6; the second, which is more subtle as it lies at a higher level of abstraction,
is the relationship between a bridge object and its different ‘representations’. This
duality is akin to that between a theme and a number of variations on it: anything
which happens at the level of the bridge object will have ‘ramifications’ in the
context of all its representations. Such ‘ramifications’ will then entertain coherence
relations between them just as different ‘variations’ on the same ‘theme’ lying at the
level of the bridge object, which then appears as ontologically ‘responsible’ for the
existence of such relations.

For instance, the following picture represents the lattice structure on the collec-
tion of the subtoposes of a topos £ inducing lattice structures on the collection of
‘quotients’ (i.e. geometric theory extensions over the same signature) of geometric
theories T, S, R classified by it.

Lattices of theories
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Notice that there are infinitely many theories classified by the same topos,
which may belong to different areas of mathematics. So, if one ignores toposes,
it would be difficult to realize that a particular structure we are dealing with
in a specific mathematical context has in fact a counterpart in another field of
mathematics just because this structure is induced by a universal structure lying at
the topos-theoretic level. It would therefore be of great usefulness for the ‘working
mathematician’ to realize about which of the construction (s)he deals with can be
lifted at the topos-theoretic level, so that alternative versions of them can be obtained
by switching to different representations of the same topos. Indeed, a topos is an
object that, by embodying, in a sense, the collection of all points of view on a given
topic, represents a crossroads between different mathematical paths, a place where
different perspectives and languages converge mirroring one into another.

By making a topos-theoretic analysis of the concepts one works with, one is
also able to understand whether the notions one is dealing with are sufficiently
robust or modular (in the sense that they correspond to topos-theoretic invariants), in
which case they admit infinitely many reformulations in different contexts providing
multiple points of view on the given topic, or whether instead they are ad hoc,
concrete notions that perhaps serve a very specific purpose but which occupy a
relatively marginal place in the mathematical landscape.

In our context, there are also two main meanings that we can give to the
expression ‘point of view’. As argued in Sect. 9.6, we can think of a generalized
element of an object in a category as a point of view on it. But it is also natural
to think of a presentation of a bridge object as a point of view on it. In fact, in the
context of classifying toposes, their different presentations correspond to different
theories classified by them, which indeed provide, each with its own language,
different points of view on these toposes.

When we talk about morphogenesis (see Sect.9.3), we refer to the fact that
different invariants on a bridge object may manifest themselves in different ways in
the context of different presentations of that object. We can interpret this by saying
that every form that exists abstractly at the level of a bridge object differentiates
giving rise to different forms in the context of different presentations of that object.
It is this process of ‘differentiation from the unity’ that we call ‘morphogenesis’.
As an example of the significantly different ways in which even basic invariants of
toposes manifest in the context of different sites, consider the property of a topos
to be bivalent: in the context of a trivial site (C, T), it corresponds to the property
of C to be strongly connected (in the sense that for any objects a and b of C, there
is both an arrow ¢ — b and an arrow b — a), in the context of an atomic site
(C, Jat) it corresponds to the property of C to be non-empty and to satisfy the joint
embedding property (that is, the property that any two objects of C admit an arrow
from a third one), and in the context of the classifying topos of a geometric theory
T (represented as the category of sheaves on its syntactic site) it corresponds to
the property that T be geometrically complete (in the sense that every geometric
assertion in the language of the theory is either provably true or provably false in it,
but not both). As another example, the property of a topos to satisfy De Morgan’s
law manifests in the context of a topos of the form [C, Set] as the amalgamation
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property on C (i.e. the property that every pair of arrows with common domain can
be completed to a commutative square), while in the context of the topos of sheaves
Sh(X) on a topological space it corresponds to the property of X to be extremally
disconnected (in the sense that the closure of any open set is open). As yet another
example, take the property of a topos to be Boolean; in the context of a presheaf
topos [CP, Set] it corresponds to the property of C to be a groupoid, while in the
context of the topos of sheaves Sh(X) on a topological space it corresponds to the
property of X to be almost discrete. Notice that these are relatively simple invariants
of toposes that are very easily calculated; still, their different manifestations in the
context of different presentations are very surprising (without the point of view of
toposes, it would have been hard to imagine that they could be related to each other),
which gives an idea of the mathematical morphogenesis induced by topos-theoretic
invariants (which of course will be much greater than in the above examples in the
case of more sophisticated invariants).

It is important to remark that, whilst ‘concretely’ very different, all the manifes-
tations of a given invariant in the context of different presentations are compatible
with each other and actually entertain coherence relations ultimately resulting from
the fact that they all come from the same source. Most strikingly, this morphogenesis
is entirely determined by the structural relationship between a topos (or, more
generally, a bridge object) and its different presentations.

As an example of a ‘bridge’ obtained by using the above-mentioned invari-
ants, we mention our topos-theoretic interpretation (Caramello 2014) of Fraissé’s
theorem in Model Theory, where the classifying toposes of the theories T’ of
homogeneous T-models (where T is a geometric theory classified by a presheaf
topos whose category f.p.T-mod(Set) of its finitely presentable models satisfies
the amalgamation property) are presented, on the one hand, as the categories
Sh(f.p.T-mod(Set)°P, Ja¢) of sheaves on f.p.T-mod(Set)°? with respect to the
atomic topology and, on the other hand, as the categories Sh(Cy, J1) on the
geometric syntactic site of T’. Transferring the invariant property of being bivalent
across these two presentations yields the following result: T is complete if and only
if f.p.T-mod(Set) is non-empty and satisfies the joint embedding property. Notice
that completeness is in general a hard-to-establish property of theories, while the
joint embedding property, at least in a great number of situations, is a much more
‘concrete’ and easier property to investigate.

9.8 Sites and Toposes, or the Contingent and the Universal

The key element on which the ‘bridge’ technique is based is the fundamental
ambiguity consisting in the fact that any given topos has infinitely many different
presentations. Topos-theoretic invariants can thus be used for generating ‘bridges’
connecting such presentations. As in any ‘bridge’, we have two levels: that of the
contingent, represented in this case by sites, axiomatic presentations of theories or
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other objects by means of which toposes can be presented, and that of toposes,
which is the abstract level where invariants naturally live.

Every topos-theoretic invariant generates a veritable mathematical morphogene-
sis resulting from its expression in terms of different presentations of toposes, which
often gives rise to connections between ‘concrete’ properties or notions that are
completely different and apparently unrelated from each other.

The mathematical exploration is therefore in a sense ‘reversed’ with respect to
the more classical, ‘bottom-up’ approaches since it is guided by the equivalences
between different presentations of the same topos and by topos-theoretic invariants,
from which one proceeds to extract concrete information on the theories or contexts
that one wishes to study.

Toposes can be thought of as ‘stars’ that enlighten mathematical reality (cf.
Sect.9.6), as universal standpoints on theories which naturally unveil their sym-
metries. A site, or, more generally, an object from which a topos can be built, is,
in a sense, a point of view on that topos. Any site (C, J) can be ‘mapped’ to the
corresponding topos by means of the canonical functor

l:C— Sh(C,J)

to the topos of sheaves on it. Interestingly, there are infinitely many ‘intermediate’
sites between it and the associated topos (which can be considered itself a site,
by equipping it with the canonical topology C), obtained by equipping any full
subcategory of Sh(C, J) containing the image of C with the Grothendieck topology
induced by C. These sites can be viewed as different ‘scales’ of observation
for phenomena formalized as topos-theoretic invariants; the way in which such
invariants express in terms of them would then account for the existence of multiple
descriptions of invariant laws at different scales. Having different and apparently
incompatible descriptions for a given ‘physical’ content at different scales is a
fundamental problem that physicists face; a topos-theoretic analysis of this kind
of problems could therefore be highly beneficial.

A simple example illustrating this last remark is provided by the construction
of the Alexandrov space Ap associated with a preorder P. Recall that Ap is the
topological space whose underlying set is P and whose open sets are the upper sets
with respect to the preorder relation, that is the subsets U of P such that whenever
a <binP,a € U implies b € U. Now, it is easy to see that we have a canonical
equivalence

[P, Set] ~ Sh(Ap) .

The first presentation [P, Set] of this topos is in a sense ‘combinatorial’, while the
second is topological; indeed, the objects of the first site are the elements of P,
considered as objects of a category and hence deprived of internal structure (as if
they were elementary particles), while the objects of the canonical site presenting
Sh(Ap) are open sets of P, which instead have a rich internal structure supporting a
geometrical intuition. Accordingly, when a given topos-theoretic invariant is studied
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from the point of view of these two presentations, in the first case one obtains a
combinatorial formulation of it, while in the second a topological formulation. Take
for instance the property of a topos to be De Morgan; as we saw in Sect. 9.7, this
reformulates in terms of P as the amalgamation property on it (that is, the property
that for any elements a, b, ¢ € P such thata < b and a < c there is d € P such that
b < d and ¢ < d) and in terms of Ap as the property of this space to be extremally
disconnected.

Let us further elaborate more generally on this duality between the contingent
and the universal.

Every language or point of view is partial and incomplete (i.e. full of ‘holes’),
and it is only through the integration of all points of view that we can capture the
essence of things (cf. Sects. 9.7 and 9.6).

There is no universal language that would be better (in an absolute sense) than all
the others; every point of view highlights certain aspects and hides others and can
be more convenient than another in relation to a certain goal. Universality should
thus be researched not at the level of languages (or ‘points of view’) but at the level
of the ‘ideal’ objects on which invariants are defined.

It is therefore necessary to reason at two levels, that of the invariants (and the
‘bridge’ objects on which they are defined) and that of their manifestations in the
context of ‘concrete’ situations, and to study the duality between these two levels, a
duality that can be thought of as the one between a ‘sense’ and the different ways to
express it. These two levels are independent from each other and important each in
its own right; as observed in Sect. 9.3, confusing them makes unification collapse to
‘homogenisation’.

9.9 Invariant-Based Translations

The ‘bridge’ technique is a methodology for translating notions, ideas and results
across different mathematical contexts. It is important to realize that, in general,
such translations are not literal, since they are determined by the expression of
topos-theoretic invariants in terms of different presentations of toposes, rather than
by the use of a ‘dictionary’. In fact, as already remarked in Sect. 9.3, ‘dictionaries’,
or direct ways of relating two given objects with each other, exist only in a minority
of cases, which in fact are relatively uninteresting since the resulting translations do
not essentially change the syntactical shape in which the information is presented
and hence do not really generate novel points of view on it; these are precisely the
situations where unification collapses to homogenisation.

In fact, even in Linguistics, a good translation is most often a non-literal one; such
a translation should be based on a preliminary identification of the invariants, that is
of the aspects of the text which one wants to remain unchanged (i.e. preserved) in the
transition process from one language to the other. In the case of translations between
natural languages, the most obvious invariant is meaning, but there are others too:
for instance, one might also, or in alternative, want to preserve a particular type
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of metre or musicality, especially when translating a poem. Anyway, whatever the
invariants, what matters is to let them guide the translation, that is play the role of
bridge objects determining the translation by virtue of how they express in the two
different languages. The same happens with the mathematical translations based
on topos-theoretic ‘bridges’: in this case the objects to be related are mathematical
contexts or theories and the bridge objects are toposes associated to them, on which
an infinite number of invariants are defined.

9.10 Symmetries by Completion

As a matter of fact, the more one enlarges the mathematical environment where
one works, the higher is the number of internal symmetries that one generates.
Think for example of number systems; the development of mathematics has gone
progressively in the direction of extending them in order to find solutions to certain
problems (such as finding inverses to certain naturally defined operations such as
addition, multiplication, taking powers etc.). For instance, from the set of natural
numbers one has constructed the integers by formally adding negative numbers: by
doing this, a fundamental symmetry with respect to the zero has appeared. Similarly,
by passing from the real line to the complex plane in order to notably find a solution
to the equation x2 + 1 = 0, one has found a much more ‘symmetric’ mathematical
environment, as witnessed in particular by the fundamental theorem of algebra
(which provides a perfect symmetry between the degree of a polynomial in one
variable and the number of its roots counted with their multiplicities, and which has
no natural analogue in the restricted context of the real line).

On the other hand, to relate different languages or points of view to each other it
is necessary to complete them to objects that realize explicitly the implicit hidden in
each of them and which therefore can act as bridge objects connecting them. Indeed,
it is at the level of these completed objects that invariants, that is, symmetries,
manifest, and that we can understand the relationships between our given objects
thanks to the ‘bridges’ induced by the invariants.

We can see all these principles incarnated by the use of toposes as ‘bridges’. As
the complex plane C is obtained from the real line by means of a formal construction
(namely, R[x]1/(x2 + 1)) consisting in the addition of certain ‘imaginaries’, so
the topos Sh(C, J) of sheaves on a site (C, J) represents a completion of C by
the addition of imaginaries (indeed, any object of Sh(C, J) can be canonically
expressed as a ‘definable’ quotient of a coproduct of objects coming from C).
Also, the classifying topos of a theory is constructed by means of a completion
process (of the theory itself), with respect, in a sense, to all the concepts that she is
potentially capable to express. Thanks to the ‘bridge’ technique, different theories
that describe the same mathematical content are put in relation with each other as if
they were fragments of a single object, partial languages that complement each other
by mirroring each into one another within the totality of points of view embodied
by the classifying topos.
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In fact, a translation should not be thought of as a way for relating entities that
are necessarily very different from each other, but as a process of discovery of new
potential implicit in a certain point of view or language. Every language, in an
attempt to express a reality that is much richer, can be compared to a sketch drawn
by an artist. In looking at it, our brain operates a sort of automatic completion of it
which allows us to understand its implicit meaning. The transition from a linguistic
expression to its meaning can thus be thought of as a kind of completion.

9.11 The ‘Bridge’ Technique in Topos Theory

As anticipated in the previous sections, the construction of a topos-theoretic ‘bridge’
involves first of all the identification of an equivalence between two different
presentations for the same topos; this will form the ‘deck’ of the bridge, while the
different objects presenting the toposes will constitute the extremes of the bridge (to
be related with each other). Of course, one can also consider, as ‘decks’ of bridges,
more general kinds of relationships between toposes that are not equivalences,
but, whilst invariants under equivalences of categories are easily generated and
identified, there are many less invariants available in the case of a relation that is
not an equivalence. So, even if one starts with two toposes between which there is a
relation that is not an equivalence, it is often convenient to try to modify the toposes
involved by suitable operations in order to obtain an equivalence of toposes and then
apply the ‘bridge’ technique to the latter.

Next, one considers a topos-theoretic invariant, and tries to “unravel’ it both in
terms of the first presentation and in terms of the second (in a non-tautological way,
that is obtaining genuine, ‘concrete’ expressions for it in the ‘languages’ of the two
presentations); provided that this is feasible, these characterizations will give the
two ‘arches’ of our bridge.

For example, a ‘bridge’ between different sites of presentations for the same
topos induced by an invariant property of toposes, has the following form:

Invariant I across
the equivalence
Sh(C, J) ~ Sh(D, K)

site characterization site characterization

or -~ -~ or
~ - =~ ~
~ ~
-~ ~
~ ~
(c.J) (D, K)
Property P, 1) Property Q(p, i)

Here the properties P, ;) and Q(p, k) of the sites (C, J) and (D, K), shown by
the ‘bridge’ to be equivalent, are unified as different manifestations, in the context
of the sites (C, J) and (D, K), of the same invariant / lying at the topos-theoretic
level.
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In practice, the choice of the invariant(s) will depend on the kind of information
that one is interested to extract from the equivalence of toposes; indeed, the invariant
should be chosen so that its expressions in terms of the different presentations
directly relates to the aspects of the problem that one is interested to investigate.
Normally, in order to extract a significant amount of information on a non-trivial
mathematical problem, one single invariant will not suffice; one will have to
consider several invariants (and hence generate several ‘bridges’) and combine
the insights obtained thereby in order to eventually arrive at a global and deep
understanding of the problem. In fact, each invariant will allow to ‘read’ (or
‘decode’) certain information ‘hidden’ (or ‘coded’) in the equivalence of toposes;
there is not in general a privileged invariant that would subsume all the others, in the
sense that the result generated by it through the ‘bridge’ technique (in the context of
the given equivalence) would entail the results generated by the other invariants.

Any ‘bridge’ results in a connection between ‘concrete’ properties or notions
involving the objects used for presenting the topos. Indeed, in spite of their crucial
role in establishing such a correspondence, toposes do not appear in the final
formulation of the result. It is important to bear in mind that the majority of
correspondences, dualities and equivalences existing in mathematics are actually
‘hidden’ (in the sense that they are not induced by ‘dictionaries’ such as func-
tors between sites or interpretations between theories and hence cannot be fully
appreciated ‘concretely’) and manifest themselves only at the topos-theoretic level;
our topos-theoretic reinterpretation and generalization of Galois theory (Caramello
2016c¢), reviewed in Caramello (2016a), is a compelling illustration of this (see also
Sect. 9.12 below).

We should pause to note that this methodology represents a distinctly abstract
way of doing mathematics, in the sense that it is an implementation of the principle
according to which in order to obtain specific, ‘concrete’ information about a
given mathematical problem, one should abstract it in several different directions
(where by abstracting we mean focusing on a limited number of aspects at a time,
temporarily forgetting about all the other ones) and then proceed to combine and
integrate the insights obtained by investigating the resulting generalisations (or
collecting information about them) to derive ‘specific’, ‘concrete’ results on the
original problem. The underlying idea is that concreteness can be obtained in a
top-down way by intersecting abstract planes, much as we can obtain a point by
intersecting two lines in a plane or three planes in the three-dimensional affine
space. The advantages of such an abstract approach are multiple. First of all, such a
process creates a whole web of relations surronding the given problem, generating a
sort of ‘rain of results’ falling into that territory. Moreover, it enlightens the general
architecture of the proof and where and how the hypotheses come into play. This
leads to a form of modularity: since the role of the hypotheses is enlightened, one
is in the position to understand how different hypotheses could lead to different
results, thereby also realizing a form of continuity. In other words, by setting the
given problem within a family of related problems, this methodology allows to see
it not in an isolated way but as part of a bigger picture, which greatly enhances
one’s understanding. Still, the ‘bridge’ technique is radically different from the
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traditional, relational way of doing mathematics based on category theory. The
difference between our approach and the classical categorical one is particularly
apparent in the treatment of duality theory (see Caramello (2020) for a discussion on
this). Indeed, the fundamental relational notion in category theory is that of functor,
i.e. morphism of categories; now, a functor is for us a kind of dictionary (it maps
an object of the first category to an object of the second, and similarly for arrows)
and, as we remarked above, functors are by no means sufficient to account for the
majority of correspondences and dualities existing in mathematics. One needs a
more flexible notion, and this is precisely what is achieved by the concept of a
‘bridge’ between different presentations of a topos.

The methodology of toposes as ‘bridges’ represents a structuralist way of doing
mathematics in the sense that it is based on uncovering hidden structures (that
is, structures that are for the most part invisible from the concrete perspective
of the ‘working mathematician’, such as Morita equivalences and topos-theoretic
invariants) and letting them guide the mathematical exploration; it is therefore
‘upside-down’ with respect to the more classical mathematical styles based on a
preliminary study of ‘concrete’ structures and to the subsequent, ad hoc identifica-
tion of suitable invariants.

As far as the level of generality of the technique of topos-theoretic ‘bridges’ is
concerned, this methodology is applicable to all those situations whose aspects that
one wants to investigate can be encoded by means of suitable toposes and invariants
on them. This certainly includes first-order mathematics (as formalized in terms of
geometric logic) and a great amount of higher-order mathematics as well. Indeed,
the possibility of considering Grothendieck toposes not just over the topos of sets
but over an arbitrary Grothendieck topos allows one to construct classifying toposes
for all those higher-order theories which can be formalized as (finite sequences
of) relative geometric theories. Moreover, many mathematical objects of different
kinds, including higher-order ones, can be used for presenting toposes; for example,
the very notion of site is second-order.

9.12 The Duality Between ‘Real’ and ‘Imaginary’

As already remarked in Sect.9.10, the passage from a site (or a theory) to
the associated topos can be regarded as a sort of ‘completion’ by the addition
of ‘imaginaries’ (in the model-theoretic sense), which materializes the potential
contained in the site (or theory). The duality between the (relatively) unstructured
world of presentations of theories and the maximally structured world of toposes is
of great relevance as, on the one hand, the ‘simplicity’ and concreteness of theories
or sites makes it easy to manipulate them, while, on the other hand, computations
are much easier in the ‘imaginary’ world of toposes thanks to their very rich internal
structure and the fact that invariants live at this level.

The ‘bridge’ technique thus involves an ascent followed by a descent between
two levels, the ‘real” one of ‘concrete’ mathematics (represented by sites or other
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objects presenting toposes) and the ‘imaginary’ one of toposes, which we can
schematically represent as follows:

topos
Morita equivalence

choice of invariants
lifting \\‘ for computation

starting point
= concrete fact
(often quite
elementary)

IMAGINARY

generation
VAR of other

REAL

concrete results

no
direct
deduction

This ‘jump’ from the ‘real’ into the ‘imaginary is indispensable, or at least
highly useful, in many situations to reveal correspondences between ‘concrete’
mathematical contexts that would be hardly visible otherwise (cf. Sect.9.11).
Toposes thus act as sorts of ‘universal translators’, crucial for establishing the
‘bridges’ but disappearing in the final formulation of results.
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Chapter 10 ®
Game of Grounds Creck fo

Davide Catta and Antonio Piccolomini d’Aragona

Abstract In this paper, we propose to connect Prawitz’s theory of grounds with
Girard’s Ludics. This connection is carried out on two levels. On a more philosoph-
ical one, we highlight some differences between Prawitz’s and Girard’s approaches,
but we also argue that they share some basic ideas about proofs and deduction.
On a more formal one, we sketch an indicative translation of Prawitz’s theory
grounds into Girard’s Ludics relative to the implicational fragment of propositional
intuitionistic logic. This may allow for a dialogical reading of Prawitz’s ground-
theoretic approach. Moreover, it becomes possible to provide a formal definition of
a notion of ground-candidate introduced by Cozzo.

Keywords Grounding - Game - Dialogue - Proof - Pseudo-ground

10.1 Introduction

Dag Prawitz’s theory of grounds and Jean-Yves Girard’s Ludics are very recent
semantics, shedding a new light upon some fundamental topics in contemporary
mathematical logic.

Prawitz aims at explaining the compulsion exerted by proofs, in such a way
that this epistemic power depends on the valid inferences of which a proof is
built up. Girard, on the other hand, proposes a denotational semantics for Linear
Logic, leading to a dialogical framework inspired by proof-search or game-theoretic
approaches.
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The two theories have different targets and employ different formal means. Fur-
thermore, they structurally differ on many points, often fundamental. Nevertheless,
they also share some common philosophical standpoints. First of all, the idea that
evidence depends on (the possession of) objects constructed through primitive,
meaning-constitutive or meaning-conferring, operations. Secondly, the idea that a
proof is not an evidence object, but an act through which an evidence object is
obtained. Thus, our first aim in this paper is that of providing a philosophical com-
parison between Prawitz’s theory of grounds and Girard’s Ludics, by highlighting
their similarities, as well as their differences (Sect. 10.4).

In the light of these philosophical similarities, one could wonder whether the
two frameworks can be linked also in a more formal sense. As a second point of our
work, we suggest, in a purely indicative way, how the link can be found, by outlining
a translation from Prawitz’s theory of grounds into Girard’s Ludics (Sect. 10.5).
The link could allow for a dialogical reading of Prawitz’s account. In addition, it
could permit a rigorous description of the notion of ground-candidate introduced by
Cesare Cozzo to fix some weak points of an earlier formulation of Prawitz’s theory
of grounds.

Before establishing the aforementioned philosophical and — indicative — formal
links, however, we need to introduce the basic concepts of Prawitz’s theory of
grounds and of Girard’s Ludics. Thus, this will be our starting point (Sects. 10.2
and 10.3).

10.2 Theory of Grounds

Through the theory of grounds (ToG), Prawitz aims at explaining how and why
a correct deductive argument might compel us to accept its conclusion if we
have accepted its premises/assumptions. Prawitz’s previous semantics in terms of
valid arguments and proofs (SAP)! had exactly the same purpose, but it suffered
from some problems. Clearly, the reasons that led Prawitz to ToG are not the
topic of this paper. However, some of them must be mentioned, because they
will be important when discussing the relationship between Prawitz’s and Girard’s
respective philosophical standpoints.

10.2.1 From SAP to ToG

Prawitz’s first semantic proposal® is centered on the notion of valid argument.
An argument is a sequence of first-order formulas arranged in tree form, where

1 See mainly Prawitz (1973, 1977).
2 See mainly Prawitz (1973).
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each node corresponds to an inference with arbitrary premises and conclusion.
Validity of closed arguments — i.e. with no undischarged assumptions and unbound
variables — is explained by saying that arguments ending with introductions, called
canonical, are valid when their immediate sub-arguments are. Arguments ending
with inferences in non-introductory form, called non-canonical, are instead valid
when they can be reduced to a closed canonical valid argument. Open arguments
are valid when all their closed instances are. Reductions employ constructive
functions that transform trees ending with inferences in non-introductory form
into trees where these inferences are removed. These functions are therefore a
generalization of Prawitz’s own reduction procedures for normalization in Gentzen’s
natural deduction systems.> In his later papers Prawitz proposes a similar approach,
where the notion of valid argument in tree form is replaced by proofs understood as
abstract objects built up of functions standing for valid inferences.* The definitions
of notions such as closed canonical proof, closed non-canonical proof, and open
proof, run basically like the corresponding ones in terms of valid arguments.

The question is now whether valid arguments and proofs, as defined in SAP,
actually oblige us to accept their conclusion if we have accepted their assumptions.
The epistemic power must stem from the valid inferences of which valid arguments
and proofs are made up. Hence, what we need is an appropriate definition of
the notion of valid inference. In SAP, this becomes the idea that an inference is
valid if it gives rise to valid arguments and proofs when attached, respectively,
to valid arguments and proofs. The overall framework, however, turns out to be
unsatisfactory. One of the main problems stems from the interdependence of the
concepts of valid inference and proof. The idea that proofs are chains of valid
inferences seems to require a local notion of valid inference; in SAP, instead, the
order of explanation is reversed, for valid inferences are defined in the global terms
of the valid arguments and proofs they belong to. So, the compelling power cannot
be explained by induction on the length of chains of valid inferences; since valid
arguments and proofs may contain non-canonical steps, some valid inference may
end a chain where a valid inference of the same kind, and of an equal or higher
complexity may occur.’

Observe that the interdependence problem depends on the canonical/non-
canonical distinction. So, a way out may be found by endorsing what is often called
the proof-objects/proof-acts distinction introduced by Martin-Lof and developed
by Sundholm.® The idea could be that proof-acts are chains of epistemic steps
allowing to construct appropriate proof-objects. The former involve canonical or
non-canonical moves, but we may require the latter to be always canonical, and

3 See Gentzen (1934) and Prawitz (1965).

4 See mainly Prawitz (1977).

5 A similar point, although in a different context, is raised by Tranchini (2014a) and Usberti (2015).
6 Martin-Lof (1984, 1986) and Sundholm (1998).
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specified by simple induction.” Then, we may explain validity of inferences with
respect to proof-objects, leaving proof-acts aside.

Clearly, valid inferences are exactly the steps that proof-acts are built up of.
Hence, the above mentioned idea consists of explaining validity of inferences
through the result that valid inferences yield — namely the proof-object they produce
— rather than through how the result is obtained — namely the proof-act where
they are used. This in turn means that what valid inferences generate is not only
inferential structures, but abstract entities too. An inference cannot be the simple
appending of a conclusion under some premises; also and above all, it has to be the
application of an operation on proof-objects, with proof-objects as outputs in case
of success.

As we shall see below, this strategy is exactly the one Prawitz follows with ToG.®

10.2.2 Grounds and their Language

The term ground is used by Prawitz to indicate “what a person needs to be in
possession of in order that her judgment is to be justified or count as knowledge”.’
According to this view, one should conceive of “evidence states as states where the
subject is in possession of certain objects”.'? But grounds also have to comply with
a constructivist setup, whence they must be epistemic in nature. This means that
they can be grasped according to the idea that “one finds something to be evident
by performing a mental act”.!! So, such an informal picture can be further specified
by spelling out what kind of constructive operations build grounds. Hence, grounds
will be what we may call operational entities.

A language of grounds refers to a background language. Endorsing the so-called
formula-as-type conception,'? the formulas of the background language provide

7 See also Tranchini (2014b).

8 A more detailed reconstruction of the content of this Section is in Piccolomini d’ Aragona (2017,
2019).

9 Prawitz (2009), 187.

10 prawitz (2015), 88.

U prawitz (2015), 88.

12 See Howard (1980). The formulas-as-types conception is based on the idea that a formula should
be understood as the class of its proofs, called its type. Thus, for example, a conjunction A A B
corresponds to the cartesian product type A x B, namely the class of pairs (a, b) with a object
in the type A (proof of A) and b object in type B (proof of B); similarly, an implication A — B
corresponds to the function space type A O B, namely, the class of functions f(x*) generating
objects f(g) in the type B when applied to objects g in the type A. The conception is consonant
with the BHK interpretation of the meaning of the logical constants in terms of (canonical) proof-
conditions of the formulas where such constants occur as main sign. In the case of an open formula
A(x1,...,x,), the type is a function space, namely, the class of functions f(xy,...,x,) that
produce objects in the type A(ky, ..., k,) when applied to n individuals. Since the output type
now depends on the input type, we may speak with Martin-Lof of dependent types (Martin-Lof,
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types for the terms — and other components — of the language of grounds, while
the latter are meant to denote grounds for asserting the former — the assertion sign
being the fregean . ToG is mainly concerned with first-order logic. So, hereafter,
the background language will be a first-order language. As one usually does in
intuitionistic frameworks, we put

A A0

— where 0 is an atomic constant for the absurd. Prawitz’s main notions are relative
to atomic bases. An atomic base for a language of grounds over a given background
language will be identified by individual and relational constants of the background
language, plus a (possibly empty) set of atomic rules over the background language.
Atomic rules are conceived of by Prawitz in the framework of so-called Post-
systems, i.e. recursive sets of rules

over a first-order language L such that: (1) A; and B are atomic, and A; # 0 (1 <
i <n); (2)if x occurs free in B, then there is i < n such that x occurs free in A;.13
Once a set of atomic rules has been set down, atomic derivations can be specified in
a standard inductive way.

We can outline a first example of language of grounds, labelled C, where terms
are built up of symbols that correspond only to Gentzen’s introduction rules. Given
a first-order language L and an atomic base ‘B over L with atomic system S,
the alphabet of C contains names ¢? for atomic derivations of A in S with no
undischarged assumptions and unbound variables, possibly indexed variables &4
typed on formulas A of L, typed operational symbols kI with k = A, Vv, —,V, 3,
and a typed operational symbol 04 for A formula of L expressing the explosion
principle. Typed terms are defined in a standard inductive way, e.g. in the case of
Vv, —, 3 and 0 — we leave types of the operational symbols unspecified whenever
possible —

e T:AieX = VIIAiIFAIVAIT) : AivA e X [i=1,2]

e« T:BeX = — IEA(T): A > B € X [the typed-variable after the symbol
indicates that this variable is bound by the symbol]

e T:A(t)e X = IAQ@) FIXAI(T) : IxA(x) e X

e T:0eX = 04(T):A€eX

1984). One usually does the same with so-called hypothetical judgments Ay, ..., A, - B, where
the input is given by objects in the types Ay, ..., A, and the output is an object in the type B.

13 Sometimes, one also considers atomic rules that bind individual variables or assumptions, but
this point is not essential for our purposes.
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With C we can already state clauses fixing what counts as a ground for closed atomic
formulas, for closed formulas with A, v and 3 as main logical sign, and for O:

(A) a ground over B for atomic - A is any ¢4

(A) a ground over B for closed = A A B is AI(T, U) where T denotes a ground
over ®B for - A and U denotes a ground over ‘B for - B

(V) a ground over ‘B for closed - A vV Ay is VI[A; = Ay Vv A](T) where T
denotes a ground over ‘B for - A; withi = lori =2

(3) a ground over ‘B for closed - IxA(x) is II[A() F IxAX)](T) where T
denotes a ground over *B for = A(¢) for some ¢

(0) no T denotes a ground over B for 0

On the contrary, the clauses for — and V will involve total constructive functions
of appropriate kind, taking individuals and/or grounds of given types as arguments,
and producing grounds of given types as values. Like in the BHK-clauses,'* the
notion of total constructive function may be assumed as primitive:

(=) a ground over B for closed - A — B is — I&4(T) where T denotes a
ground over ‘B for A F B, i.e. a constructive function over ‘B of type A - B
[the typed variable after the symbol indicates that this variable is bound by the
symbol]

(V) a ground over ‘B for closed - VxA(x) is VIx.(T) where T denotes a ground
over B for - A(x), i.e. a constructive function over B of type A(x) [the
individual variable after the symbol indicates that this variable is bound by the
symbol]

The clauses can be considered as a ground-theoretic determination of the meaning
of the logical constants. Therefore, the operational symbols of C are primitive
operations, and its terms may be qualified as canonical.

However, constructive functions have to be understood in an unrestricted way,
and C is too weak to express all of them. Some terms denote some constructive
functions, but not all functions are denoted — e.g. there is no term denoting a
constructive function of type A1 A A2 + A; (i = 1,2). Thus, one must also
bring in extensions of C — in fact, as we shall see in Sect. 10.2.3, because of
Godel’s incompleteness no closed language of grounds permits to express all the
grounds we need. The behaviour of an operation can be fixed through equations
that show how to compute it on relevant values. As an example, consider the
extension C* of C whose alphabet contains new typed operational symbols k E with
k= A, Vv, —,V, 3, standing for Gentzen’s eliminations, and additional, inductively
defined terms, e.g. in the case of v, — and 3 — we leave types of the operational
symbols unspecified —

e T:AVB,U:C,V:CeX = VEEAEB(T,U,V): C e X [the typed-
variables after the symbol indicates that these variables are bound by the symbol.

14 See for example Troelsta and Van-Dalen (1988).
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Observe also that U and V are not necessarily of type A - C and B - C —
these are just term-formation clauses. It is the equation below that permits us to
interpret this operation semantically as one that yields a ground for - B when
applied to grounds for - A v B, A C and B F C - think of the elimination
rule for Vv in Gentzen’s natural deduction, and of the relative reduction as defined
in Prawitz!’]

e T:A—- B U:AeX =—E(T,U):BeX

o T :3xA(x),U : B e X = 3E x éAW (T, U) : B € X [the typed- and
individual variables after the symbol indicates that these variables are bound by
the symbol. Observe also that U is not necessarily of type A(x) - B — these are
just term-formation clauses. It is the equation below that permits us to interpret
semantically this operation as one that yields a ground for - B when applied
to grounds for - 3xA(x) and A(x) = B — think of the elimination rule for 3 in
Gentzen’s natural deduction, and of the relative reduction as defined in Prawitzlﬁ]

The equations are standard conversions, e.g. in the case of VE, — E and 3E

o VEEM EM (VI[A; - A v A(T), Uy (E4), U (642)) = Ui(T)
s — E(— IENTEY),U)=TU)
o JE x EAM AI[A@W) F IxA)(T), UEAX)) = U(T)

They show that the k E’s capture new total constructive functions, e.g. in the case of
VE and 3F of types

I.AVB,(AFC),(BFCO)FC
2. IxA(x),(Ax) - B)F B

As a further example, consider the extension of C* obtained by adding a typed
operational symbol DS for disjunctive syllogism, with equations — we leave the
type of DS unspecified —

« DS(VI[BF AV BI(T),U)=T
e DS(VI[AF AV BI(T),U) = 0g(— E(T,U))

At variance with C, the last two languages of grounds also contain non-canonical
terms, that is, terms the outermost symbol of which is non-primitive.

Given a closed term 7 in some language of grounds over B, we now say that 7'
denotes a ground over ‘B when it can be reduced to a term the outermost symbol
of which is one of the operational symbols of C, that denotes a ground over ‘B
according to one of the clauses (A) — (V). Reduction employs the equations for the
operational symbols of T, by replacing definiendum by definiens. For example

— E(— 1§72 74 OVIA - A A —

AVOIERTA), &7, 0454 E")), — 1E4(E™)

15 See Prawitz (1965).
16 See Prawitz (1965).
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by the equation for — FE reduces to
VESTAEOVIIA > AF A > AVOl(— IEAEY)), 674,04 4(")

which by the equation for VE reduces to — I£4(£4). An open term denotes a
constructive function over 8 with domain ® and co-domain & when all its closed
instances denote a ground for K, where a closed instance is obtained by replacing
individual variables with closed individual terms and typed variables with closed
terms denoting grounds for the elements in ®. So, if we replace — I£4(&4) with
53‘4_"4 in the example above, we obtain that the term we started from denotes a
constructive function of type A — A+ A — A7

10.2.3 Ground-Theoretic Validity

Prawitz affirms that “to perform an inference is, in addition to making an inferential
transition, to apply an operation on the grounds that one considers oneself to have
for the premises with the intention to get thereby a ground for the conclusion”.!® An
inference will be valid over B when the application of the corresponding operation
to the alleged grounds over B for the premises actually yields a ground over B
for the conclusion. The inference is logically valid if it remains valid over all the
bases. A proof (over ®B) can be now defined as a finite chain of valid (over ‘B)
inferences. ToG respects the proof-as-chains intuition: the notion of proof is non-
circularly stated in terms of a local notion of valid inference, in such a way that
a proof involves only valid inferences. Crucially, “a proof of an assertion does not
constitute a ground for the assertion but produces such a ground”,'® that is, ToG
proofs are not objects but acts.

According to Prawitz’s view, when an inferential agent carries a proof out, he/she
comes into possession of a ground, not of a term. And grounds are, so to say, always
canonical; terms describe how grounds are obtained — their being canonical or not
depending on the kind of steps through which the possession is attained. Thus,
when Gentzen’s eliminations are linked to the non-primitive functional symbols of
C*, a performance of them on grounds for the premises will amount to nothing
but a B-reduction. In more general cases, such as DS, we can in turn still resort
to the old SAP idea of general procedures for obtaining canonical forms. Proofs
can be conceived of as chains of applications of operations that, under relevant
circumstances, coincide with computations on a sort of generalized non-normal
forms.

17 A better, but still partial development of the content of this Section is in Piccolomini d’ Aragona
(2018); a more detailed development is in Piccolomini d’Aragona (2019).

18 prawitz (2015), 94.
19 prawitz (2015), 93.
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10.2.4 Cozzo’s Ground-Candidates

Cozzo moved four objections to the old formulation of ToG presented in Prawitz’s
first papers on the subject.”? Only the fourth one is of interest for us here. Prawitz’s
definition of an act of inference was such that only valid inferences were inferences
whereas, as Cozzo argues, “it seems reasonable to say that the experience of
necessity of thought also characterizes the transition from mistaken premises devoid
of corresponding grounds”.?! In replying to Cozzo’s objections, Prawitz relaxes the
definition of inference act by allowing what he calls alleged grounds, i.e. “an [...]
inference can err in two ways: the alleged grounds for the premisses may not be
such grounds, or the operation may not produce a ground for the conclusion when
applied to grounds for the premisses”.?> However, Usberti observes that “Prawitz’s
alleged grounds have nothing to do with ground-candidates: since no restriction is
put on alleged grounds, they are entities of any kind. Now, an assertion based on
an entity of any kind may be true or false, but it is difficult to see how it can be
rational at all”.>3 As Usberti observes, while Cozzo’s first three objections might be
overcome by Prawitz’s adjustments, Cozzo’s fourth objection remains unsolved.

As a remedy to his objections, Cozzo proposes an interesting notion of ground-
candidate, “‘a mathematical representation of the results of epistemic acts underlying
mistaken premises”. A ground-candidate “can be a genuine ground or a pseudo-
ground”** Can ground-candidates be characterized more precisely? As we shall
see below, Girard’s Ludics might suggest a promising account.

10.3 Ludics

Ludics was first proposed by Girard in his paper titled Locus Solum: from the rules
of logic to the logic of rules.? Its aim is that of studying the notions of proposition
and proof (of type and element of a type) and of reconstructing them from a more
primitive notion of interaction.

As is well known, the cut-rule allows for an “interaction” between two proofs.
Given a proof of A under hypotheses I', and a proof of B under hypotheses A, A,
it yields a proof of B under hypotheses I', A. Gentzen’s Haupsatz establishes that
a derivation = of A under I can be always “normalized” to a derivation 7’ of A
under no more hypotheses than those in I', and where no cut-rule is employed. In

20 See Prawitz (2009, 2012).
21 Cozzo (2015), 114.

22 prawitz (2015), 95.

23 Usberti (2017), 525.

24 Cozzo (2015), 114.

25 See Girard (2001).
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the light of the Curry-Howard correspondence, normalization can be understood as
the evaluation of a program to its normal form.

Usually, the cut-rule is conceived as a deduction rule over a previously defined
formal language. Once language and rules have been given, one can study the
properties of cut-elimination. In order to attribute a computational meaning to
proofs, a deterministic cut-elimination is required, i.e. given an instance of the cut-
rule, there is only one way of eliminating it.

Ludics starts from an entirely opposite point of view. Given a deterministic cut-
elimination defined on sui generis computational objects, it seeks whether it is pos-
sible to recover formulas and rules. The objects of Ludics are an abstract counterpart
of derivations in a well-behaved and complete fragment of multiplicative-additive
Linear Logic. Such objects are built up of rules that ensure a deterministic cut-
elimination on arbitrary numerical addresses. The latter represent the location that
a formula may occupy in a derivation. This innovative approach, of which we shall
say more below, is mainly inspired by a polarity phenomenon that we deal with in
the next Section.

10.3.1 Polarity

Linear connectives are normally divided into two classes: of positive polarity —
i.e. ®, multiplicative conjunction, @, additive disjunction, 1 multiplicative truth
and O additive false — and of negative polarity — i.e. &, additive conjunction, %,
multiplicative disjunction, T, additive truth and L multiplicative false. A formula is
said to be negative (resp. positive) iff its main connective is negative (resp. positive).
A linear connective « is said to be reversible iff, for each proof 7 of a sequent I, A,
for A with main connective , there is a cut-free proof 7" of ", A, the last rule of
which introduces *.2° The two notions are connected, in that negative connectives
are reversible, whilst the positive ones are not.

Polarity and reversibility are very important for proof-search. Suppose we are
looking for a proof of a sequent I' = I'/, A, i.e. we are trying to prove I' by selecting
a formula A in I' and then by applying an inference on it. If A is negative, the
reversibility of its main connective ensures the existence of a cut-free proof of I/, A,
the last rule of which introduces . And this means that if, e.g., A = B ¥ C, then
we have only one bottom-up application of the rule, so that I'', B, C is provable
too. Thus, selecting a negative formula in a sequent allows for an automatic proof-
search procedure. But this strategy cannot be applied uniformly, because of the non-
reversibility of positive connectives.

This notwithstanding, proof-search procedures can still be improved thanks to the
following algorithm introduced by Andreoli.”’ Given a sequent I': (1) if it contains

26 See Laurent (2002) for a detailed discussion of the phenomenon of polarity in Linear Logic.
27 See Andreoli (1992).
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negative formulas, focus on them and apply negative rules upwards until they are
all decomposed, and there are no more negative formulas; (2) when you have
finished, choose a positive formula randomly, and start decomposition by applying
positive rules upwards, focusing at each step on its positive sub-formulas until you
find negative formulas. Then, Andreoli proves that a sequent is derivable in Linear
Logic, iff there is a focusing derivation of it, i.e. a derivation that can be built by
applying his algorithm. It follows that one can restrict oneself to a set of derivations
the elements of which consist of alternations of positive and negative steps only;
positive steps cluster the positive branch of the algorithm — labelled (2) above —
whereas negative steps cluster the negative branch of the algorithm — labelled (1)
above. As an example of proof obtained through Andreoli’s algorithm, consider the
following one:

AL A + B+, B FAL A FCt, C
- A, B, (At @ BY) A, C (At ®Ch)
A B AL@BLh®d ALt Ch FAC, AteBH) @ AL ®Cl)
FA (B&C), (A*®BH @ At®Cch
FA® B&C), (At®@BYH @ Atech

Here, the bold formulas are those chosen for the step-wise proof-search procedure.
The proof can be transformed into one where the two negative steps of the first sub-
proof are merged into a single negative step, and where the same happens for the
corresponding positive steps, i.e.

FAL A +BL B FAl A Fct, C
FA B AtBhH ALt ChH FAC, At ®@BH e AleCchH
FA® B&C), (At®BYH@A+t®ChH)

In this way, polarization permits to consider generalized connectives, obtained by
“merging” negative connectives with negative connectives, and positive connectives
with positive connectives. In our example, the negative generalized connective is
— ® (— & —) and the positive generalized connective is (— ® —) & (— ® —).
In addition, the sequents of the calculus end up having the form I', A, with "
containing only positive formulas and A containing at most one negative formula.
Although an arbitrary number of such connectives exists, all of them can be
decomposed according to the same schemes of rules as follows — we use P as a
variable for positive formulas and N as a variable for negative formulas:

F N,y -+ F N, . Ty
l_(N]I®"'®Nlnl)®"'@(Npl®"'®anp)7rlv--'rn

positive rule

Py P, T e EP Py T

F(PL,® - BP)& &P, BB P,).T

negative rule
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Thanks to the fact that De Morgan dualities hold for linear logic, and that the linear
negation of a negative formula is a positive formula and vice versa, we can restrict
our language to formulas composed by ®, @ and write the schemes of rules above
as follows:

PyE Ty o P BT,
(P @ @P )& @ (P ® - ®P, ).T1,...T,

positive rule

b Py-- P, T oo EP Py, T

(PL® - ®PL® @ (P ® - @PL)FT

negative rule

10.3.2 From Polarity to Games

Observe that each derivation in a calculus based upon the clustered rules of the
previous Section is a tree in which positive rules are followed by negative rules and
vice-versa — except the axiom rule. This allows us to consider “games” on a sequent.

Let us say that a move is a couple (F, {Fi, ..., F,}), where F is a positive
(negative) formula, called focus, and F1, ..., F, are some negative (positive) sub-
formulas of F, called choices. A move is of positive polarity if its focus is a positive
formula, and of negative polarity otherwise. So, a game is a non-empty sequence
of moves such that: (1) two consecutive moves have opposite polarity; (2) the focus
of a negative rule, except possibly the first, is one of the formulas in the choices of
the positive move that immediately precedes it; (3) two distinct moves have distinct
focuses. We finally define a strategy on I' - A to be a prefix-closed set of games
on the same sequent. It is easily seen that the polarized clustered derivation in the
previous Section can be considered as the set built up of the two games

B =(A®(B&C), {A, B)), (At @ BYH @At ®ch), (a1, B)
B =(A% (B&C),{A C), (At @BH®Atech, (A, ct)

The vice-versa holds too, i.e. the strategy can be converted into the proof above.

Polarity is therefore useful to understand one of the main ideas that, as we shall
see, inspire Girard’s Ludics: proofs are strategies over a particular type of game. For
this to make sense, though, we take a final step. The cut-rule

- P F Pt
|_

can be interpreted as indicating an interplay between a strategy m for P and an
opposed strategy 7’ for PL. Clearly, if one between P and P~ is provable, the
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other cannot be so. Thus, if we want that every strategy “corresponds” to a proof in
a polarized formal system as above, we need to admit proofs of both a proposition
and its negation. To this end, we may introduce a new rule — call it daimon — that
permits to prove any possible sequent:

I—FT

10.3.3 Ludics Defined

Ludics aims at overcoming the distinction between syntax (a formal system) and
semantics (its interpretation). As is well-known, completeness implies that, for
every A, either there is a proof of A or a counter-model of A, i.e. a model of —A.
This can be understood through a dialogical metaphor; in a two-persons debate,
where one of the speakers tries to construct a proof of A and the other tries to
construct a counter-model of A, one and only one of the debaters can win. However,
models and proofs are distinct entities and, in particular, there is no interaction
between a proof of A and a model of —A. Girard’s idea is that of overcoming the
syntax-semantic distinction by interpreting proofs with proofs, and counter-models
with refutations. The properties of the attempted proofs of A are verified by testing
them, by means of a cut-elimination procedure, against attempted proofs of —A.
Proofs should be understood as proof-search procedures in the setup of the polarized
system sketched in the two previous Sections. Given a certain conclusion, we try to
guess the inference rule used to obtain it. If no rule is applied, we close the proof-
search by “giving up”, i.e. by a rule that encodes the information “I do not know
how to keep on proving the conclusion, therefore I simply assert it”. This rule is
what permits to have attempted proofs of both A and —A.

A Ludics derivation consists of rules extracted from those occurring in the above-
told clustered derivations. Formulas are replaced by numerical addresses standing
for the positions they may occupy during proof-search. In order to make this more
precise, we now give a quick sketch of formalized Ludics.

We say that an address is a string of natural numbers i1 --- i,. Two addresses
are said to be disjoint if none of them is a prefix of the other. A ramification is a
finite set of natural numbers. Given an address & and a natural number i, with & i we
indicate the address obtained by putting i at the end of £. Given an address & and a
ramification 7, with £ » [ we indicate the set of the addresses {§ i | for every i € I}.
A pitchfork is an expression I' -+ A where I', A are finite sets of pairwise disjoint
addresses such that I' contains at most one address. Addresses in I' are called
negative, while those in A are called positive. A design is a tree made of pitchforks,
the last pitchfork being the base, while the others are built through the rules:
daimon-rule [already introduced in the previous Section]

I—FT
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Positive rule
Let / be a ramification and, for every i € I, let the I'; be pairwise disjoint and
included in T". For every i € I, the rule (finite) is

e ExiFTy

Tt ED

Negative rule
Let N be a set of ramifications and, for every I € N, let ['; be included in I". For
every I € N, the rule (possibly infinite) is

|—F1’E*l
EFT

EFN)
The design — not to be confused with the only rule applied in it —

T f
is called Daimon. The only design not built by employing the rules above — called
Fid and responding to the idea of a positive conclusion with no rules above — is
I @

A cut is given by an address that occurs once at the right of - (positive polarity)
in the base of a design ®, and once at the left of - (negative polarity) in the base
of a design ©’. Thus, a cut-net is a finite non-empty set of designs such that: (1)
the addresses in the bases are pairwise disjoint or equal; (2) every address occurs
in at most two bases and, if it occurs in two bases, it occurs both positively and
negatively; (3) the graph with vertices the bases and edges the cuts is connected and
acyclic. The principal design of a cut-net R is the only design ©® € R with base
I' = A such that I is not a cut. The base of a cut-net are the uncut addresses of the
cut-net.

We now proceed to an informal description of the process of normaliza-
tion/interaction on closed cut-nets, i.e. cut-nets the base of which is empty.?® Given
such a cut-net, the cut propagates over all the immediate sub-addresses as long as
the action anchored on the positive pitchfork containing the cut corresponds to one
of the actions anchored on the negative one. The process terminates when either
the positive action anchored on the positive cut-fork is the daimon-rule, in which
case we obtain a design with the same base as the starting cut-net, or no negative
action corresponds to the positive one. In the latter case, the process is said to
diverge. When normalization/interaction between two designs © and ©’ terminates
and does not diverge, it ends up in Daimon, and © and ©’ are said to be orthogonal
— indicated with © L ©’. We give an example of terminating normalization on a
closed cut-net composed of two designs. Bold addresses are those through which
the normalization/interaction procedures propagates.

28 For a complete and formal definition, also on the open case, see Girard (2001).
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el FEB Y ek

E1+ 3 | F&2
H & EF

Feil | Fe3 Y osnr

E1F F &l

o

F&11
i
Generalizing, we say that the ortoghonal of a set E of designs on the same base
' A —written E* — is the set

(D |forall® € E,D LD}

For later purposes, we now need only four additional definitions. First of all, we
say that a set of designs E is a behaviour when E = E1L. We give two simple
examples of behaviours. Take any design of the form

HE 4
this type of design is called atomic bomb, and take E to be the singleton set
containing the atomic bomb. The set £ only contains

7,
EF
This last design is also orthogonal to the Daimon

I—ST

Thus the set E--+ will contain the atomic bomb and the Daimon — this behaviour
represents the constant 1. Consider now the following design, called skunk.

e’
Its only orthogonal will be the Daimon. Call dai the set that only contains the
Daimon. dai+ will contain the skunk and any design of the form

g N
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where N is a subset of the finite part of the power-set of the natural numbers. We
denote this last behaviour by T.

Before giving the second definition, observe that in the example of normalization
above not all the addresses of the two designs that form the cut-net are explored by
the normalization procedure, which means that in general, given a design ©, only a
sub-design ®’ of D is used to test a counter-design of opposite base. To get a clearer
idea, consider the behaviour T defined above. The orthogonal of T is the behaviour
dai. Given any design © in T, normalization between © and the Daimon will not
explore the addresses open by negative rules. So, the only design that is used in
the interaction between an element of T and 7 is the skunk. This leads us to the
following: given a design © and a behaviour G, we call incarnation of ®© in G —
indicated with |D|¢ — the smallest sub-design ©’ of © which is still in G. As a third
definition, we say that ® is material in a behaviour G when ® = |D|s. The skunk
in T, as well as the two designs in 1 are material. Finally, given a behaviour G, we
call incarnation of G — indicated with |G| — the set

D|DeGandd = D|g)

To conclude, two points must be underlined. First of all, § stands for paralogism;
it captures the idea of abandoning the dialogue or game on a position that one is not
able to justify further. When interaction yields §, one of the two designs is a locally
winning strategy; though, the same strategy may lose in other contexts. A globally
winning strategy is instead one that can never be defeated; a design can thus be
understood as a proof when the interaction with any of its ortoghonals gives . It
follows that designs are not necessarily proofs — they may be nothing but attempted
proofs. Secondly, designs are cut-free; cuts only occur when interaction is defined.
The idea is that a type is a set of cut-free attempted proofs; more precisely, a type
amounts to a set of cut-free paraproofs that behave in the same way in interactions
with orthogonal designs. More precisely, in Ludics a type is nothing but a behaviour,
as the latter notion has been defined above.

10.4 Differences and Similarities

We now propose a philosophical comparison between ToG and Ludics. Although
some deep differences may be detected, we shall argue that these two theories share
equally deep tenets, somehow inspiring the general framework they provide.

10.4.1 Differences: Order, Types and Bidirectionalism

The first and most striking difference between ToG and Ludics concerns the
logic which they aim at interpreting. Girard’s Ludics can be considered as an
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interpretation of second-order multiplicative-additive Linear Logic with weakening.
Every formula A is interpreted as a behaviour, and this permits to prove that: (1) if
7 is a proof of A, then there exists a f-free, material design © in the behaviour
associated to A such that ®© is the interpretation of 7; (2) if ® is a material and -
free design in a behaviour A, then ' is the interpretation of a proof 7w of A. Prawitz’s
ToG, instead, mainly aims at interpreting first-order intuitionistic logic. As is well-
known, a Linear interpretation of first-order intuitionistic logic requires the modality
operator !, allowing for contraction. So, for example, the intuitionistic A — B can
be defined as (!A) — B. In the version of Ludics we have been referring so far,
no interpretation of the type !A is given. However, such interpretation can be given,
for example in C-Ludics,® or in Ludics with repetitions.30 A difference between C-
Ludics and Ludics with repetitions is that the designs of C-Ludics may contain
cuts, whereas those in Ludics with repetitions — as already in Girard’s original
formulation — are always cut-free. Since the cut-free character of designs will be one
of the common points we will highlight between ToG and Ludics, the comparison
we propose should be thought as referring to Ludics with repetitions, rather than to
C-Ludics.

This first kind of difference also concerns the order on which Prawitz and Girard
reason. Prawitz’s grounds and terms of a language of grounds are thought of as
referring to a first-order background language. The latter provides types for either
classifying abstract objects, or labelling syntactical expressions that denote such
objects. Higher-order theories of grounds may be of interest, but they would face
the same difficulties as those met in any other constructivist approach. In fact, it is
well-known that nth-order logics for n > 2 imply a loss of what Dummett called
molecularity on introduction rules.>' So, a ground for a second-order existential
F 3Xa(X) should be defined through a primitive operation, say 3%/, by requiring
that 321 (M, T, X) denotes a ground for - IXw(X) iff T denotes a ground for
a(L0); but U may contain IX«(X) as a sub-formula, and the definition could be no
longer compositional. In addition, higher-order constructivist setups might suffer
from impredicativity and paradoxical phenomena.>> On the contrary, Ludics is a
second-order theory, and this would appear as an unsurmontable obstacle between
Prawitz’s and Girard’s approaches.

Recent works, however, have shown that Ludics is suitable for first-order
quantification,® or for first-order Martin-L&f dependent types.>* Moreover, the
propositional level is much less problematic — although, as we will see, not
entirely unproblematic. The difference concerning logics is therefore undoubtedly
important, but not as worrying as it may appear at a first glance.

29 See Terui (2011).

30 See Faggian and Basaldella (2011).

31 See Dummett (1993) and Cozzo (1994).
32 See Pistone (2018).

33 See Fleury and Quatrini (2004).

34 See Sironi (2014a,b).
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The second difference is what we may call the typed vs untyped distinction.
Inspired by the Curry-Howard isomorphism, ToG adopts the so-called formulas-
as-types conception, in the light of which, as already remarked, a background
language provides types for grounds and terms. Conversely, Ludics is fully untyped.
Nonetheless, Ludics aims at recovering types out of a more primitive notion of
interaction. In fact, we do have types herein; they are reconstructed as sets of designs
respecting certain constraints, namely, sets of designs equal to their bi-orthogonal,
namely, behaviours. By attributing a pivotal role to the notion of interaction,
Ludics focuses on typability, rather than on typedness; metaphorically, it seeks the
conditions under which a dialogue obtains, as well as the conditions under which a
dialogue can be said to employ logical means. So, while in ToG types are primitive
sets of proofs, in Ludics they are non-primitive sets of well-behaving designs. And
since a design can be understood as a paraproof, proofs will only constitute the
subset of a type —i.e. the set of the designs of a behaviour that win in every possible
interaction.

The third and deeper difference between Prawitz’s and Girard’s approaches is
finally the following; while ToG is clearly a verificationist semantics, in that it
bases the explanation of meaning on primitive operations that mirror Gentzen’s
introduction rules, Ludics seems to be more akin to bidirectionalism.

Verificationism can be roughly described as the idea of explaining meaning in
terms of the conditions for asserting correctly; its dual is pragmatism, according to
which meaning should be fixed in terms of the correct consequences of an assertion.
Gentzen’s natural deduction provides a paradigmatic picture for both verificationism
and pragmatism; the former is centred on introduction rules, with respect to which
elimination rules have to be justified, whereas the latter proceeds the other way
round.

Bidirectionalism is instead the standpoint according to which meaning must be
explained in terms of two primitive notions; the conditions for asserting correctly,
and the conditions under which one can safely modify the assumption of an
assertion.> Not surprisingly, bidirectionalism fits better with Gentzen’s sequent
calculus that comes with two kinds of introduction rules — right introductions and
left introductions.

As remarked by Schroeder-Heister, left introductions for the logical constant k
can be understood as generalized elimination rules where a major premise with main
sign k occurs as an assumption, and replaces assumptions of lower complexity,
which may in turn be discharged. Now, it can be shown that negative “clustered”
rules, as discussed in Sect. 10.3.1, fit with generalized elimination rules of this
kind. To verify why Ludics is more akin to bidirectionalism, it is sufficient to recall
that its rules abstract from the “clustered” ones; positive Ludics rules mirror right

35 For the Linear Logic framework, see Zeilberger (2008); for the natural deduction framework,
see Schroeder-Heister (2009); an interesting discussion of bidirectionalism in connection with
grounding can be found in Francez (2015) — Francez’s grounding is however entirely different
from Prawitz’s one.
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introductions, whilst negative Ludics rules mirror left introductions, i.e. generalized
eliminations. Crucially, both positive and negative rules are primitive, relative to the
determination of types.

10.4.2 Similarities: Objects/Acts and Computation

Despite the more or less relevant differences, it seems to us that ToG and Ludics
share at least two basic ideas. These tenets somehow inspire, from a philosophical
as well as from a formal standpoint, the overall framework which Prawitz and
Girard envisage for a rigorous reconstruction of deduction. Both such ideas can
be understood through the lens of the aforementioned distinction between proof-
objects and proof-acts.

As previously written, the distinction is explicitly at play in ToG; on the one hand,
we have grounds — what one is in possession of when justified — and, on the other,
we have proofs — acts by means of which grounds are obtained. These two sides,
which we may call respectively abstract and operational, interact via the terms of
the languages of grounds; a term denotes a ground, and codes a proof delivering the
denoted ground.

Also Ludics involves an abstract and an operational side. Here, the objects
are attempted proofs — designs — while the dynamics of deduction is represented
by interaction — cut-elimination in cut-nets. Undoubtedly, Girard proposes a very
peculiar standpoint about the act of (para)proving, i.e. a dialogical or game-
theoretic one. Nevertheless, there is still the idea that a (para)proof-act produces
a (para)proof-object; interaction looks for the (locally or globally) winning design
and, if converging, it results in a normal form representing a strategy that the (locally
or globally) winner may endorse for being (locally or globally) justified.

Now, both in ToG and in Ludics, the abstract/operational articulation relies upon
what seems to be the same programmatic idea — being the first similarity we are
going to point out. Prawitz’s objects are, as we have seen, always canonical, since
grounds are always obtained by applying primitive operations; ToG acts, instead,
may be canonical or not, depending on how the ground they yield is obtained.
Likewise, Girard’s objects, i.e. designs, are always cut-free; cuts only occur in cut-
nets, i.e. in interaction.

Thus, to Prawitz’s abstract level, inhabited by canonical objects, corresponds
Girard’s abstract level, inhabited by normal designs. Indeed, canonicity can be
looked at as a semantic generalization of normal form, where derivations are
taken not as elements generated by a fixed formal system, but as broad structures
through which one defines notions such as validity and consequence.>® To Prawitz’s
operational level, where we do have a distinction between canonical and non-

36 See Schroeder-Heister (2006), about the so-called fundamental corollary of Prawitz’s normal-
ization theory.
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canonical cases, corresponds Girard’s operational level, where we do have cuts.
Once again, we have a semantic generalization of cut-elimination; to justify a non-
canonical step, one requires harmony with respect to the canonical cases, and this is
done by showing how maximal peaks that the non-canonical step would create may
be appropriately dropped out.

Reasonably, one could now wonder where such a symmetry stems from. To
answer this question, we have to turn to the second similarity between ToG
and Ludics. Recall that Prawitz’s notion of ground accounts for evidence. But
justification takes root in meaning. Hence, grounds are built up of primitive and
meaning-constitutive operations. Within Ludics, the parallel idea is that (tentative)
evidence, represented by designs, depends on some primitive rules, the interaction
of which in cuts allows for determination of meaning of definable types. Non-
canonicity and cuts appear as soon as we focus, not on what evidence is, but on how
evidence is acquired. This may be because for both Prawitz and Girard a proof is an
act of a very special kind: it is a computation that removes non-primitive elements.

To be more precise, we know that Prawitz takes inferences as applications of
operations on grounds. Given the way operations on grounds are understood, i.e. as
fixed through equations that show how to compute non-canonical terms, we have
pointed out that, under relevant circumstances, inferences could be understood as
generalized reduction steps. Analogously, in Girard’s framework, interaction is a
process through which a (locally or globally) winning design may be found at the
end of a dialogue or game between opposite positions. The act of proving may be
therefore understood as exactly this proof-search, proceeding via cut-elimination.

However, the parallelism between the abstract sides of Prawitz’s and Girard’s
theories undergoes some restrictions. In fact, the claim that to Prawitz’s objects
— the grounds — correspond Girard’s object — the designs — must be accompanied
by the observation that designs are not objects on the same level or of the same
nature as grounds. A ground reifies an evidence state for a specific judgement or
assertion; as such, it is of a specific type, according to the proposition or sentence
involved in the judgment or assertion for which it is a ground. On the other hand,
a design reifies the moves in a proof-game, or in proof-search, independently from
judgements or assertions at issue in the interplay; as already remarked, Ludics is
untyped precisely because it aims at reconstructing the pure dynamics of giving and
asking for reasons, and at recovering typed logical strategies out of a more basic
notion of interaction. To use a slogan, we could say that, while Prawitz’s objects
are objects in the “Fregean” sense of being saturated entities obtained by filling
unsaturated entities, Girard’s objects are “interactional” objects.

On the other hand, Girard’s designs come conceptually closer to Prawitz’s
grounds when they are looked at within the global context of a behaviour, i.e.
when they share stable interactional properties with other designs. Once a class of
strategies has been, so to say, closed under cut-elimination, we are allowed to speak
of a type. Typing is thus obtained by abstracting from overall properties that objects
of the same type are expected to show when used in (attempted) deduction. This is
also the linchpin of our indicative proposal for formally linking Prawitz’s ToG and
Girard’s Ludics.
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10.5 Grounds in Ludics

After the philosophical comparison between ToG and Ludics, we seek whether these
two theories can also be compared on a more formal level. We remark, however,
that what follows is just an introductory framework, requiring further work and
refinement.

10.5.1 A Translation Proposal: The Implicational Fragment

Before starting, we pay our due to Sironi.’” When proposing an understanding of
Prawitz’s grounds in Girard’s framework, we will largely rely upon her embedding
of Martin-Lof’s type theory in Ludics.

By limiting ourselves to the implicational fragment of intuitionistic logic, we
show in a purely indicative way how Prawitz’s grounds for formulas of the kind
A — B could be translated onto Girard’s framework as designs respecting certain
constraints — we discuss only in the conclusive remarks to what extent the translation
may apply to the other intuitionistic first-order constants.

The leading idea of our indicative mapping is that of undertaking Girard’s own
line of thought, and looking at a type A as a behaviour G*. A ground for - A is to
be a f-free element of |GA |, the incarnation of G4, Finally, a cut-net R between
two appropriate f-free elements of incarnations, and such that [[R]] is a -free
element of |G4|, will here stand for a non-canonical term denoting the ground
that corresponds to [[PR]]. We now want to add something to justify the chosen
strategy.®

First of all, why should one understand a type as a behaviour? A behaviour is a set
of designs equal to its bi-orthogonal. This morally means that a behaviour contains
all the necessary and sufficient information for a dialogue or game to take place.
Thus, a behaviour yields meaningfulness, in the sense that it permits to punctually
counter-argue in any possible way over its base.

37 See Sironi (2014a,b).

38 Sironi’s setup is more complex. Let us sketch it quickly. Given an address &, a ramification I and
a set of ramifications N, a positive action is either (+, &, I) or t; a negative action is (—, &, N).
A chronicle ¢ is a non-empty, finite, alternate sequence of actions such that: (1) each action of ¢
is initial or justified by a previous action of opposite polarity; (2) the actions of ¢ have distinct
addresses; (3) if present, T is the last action of the chronicle. A f-shorten of a chronicle ¢ is ¢ or a
prefix of ¢ ended by +. The t-shortening of E — written ET — is the set of designs obtained from E
by F-shortening chronicles. E is principal iff its elements are t-free and | E-L| = ET. Sironi takes:
atype A to be (P4)1L, with P4 principal; a canonical element of a type to be an element of P4;
a cut-net R such that [[PR]] € P4 to be a non-canonical element denoting the canonical element
that [[9R]] corresponds to. The appeal to principal set of designs is due to the fact that Sironi aims
at havin?i iypes generated by their canonical elements; indeed, P4 is a kind of minimal generator
of (PA)LL.



280 D. Catta and A. P. d’ Aragona

From this point of view, a ground is a f-free element of the incarnation of a
behaviour for three reasons. It is f-free because, of course, one expects a ground
not to involve any paralogism. On the other hand, the incarnation of a behaviour is
the subset of the behaviour the elements of which actually operate in interactions.
Hence, although we could have demanded a ground to belong to the behaviour as
such, we more specifically require a ground to belong to its incarnation so to have
something minimal that is used in dialogues or games. Finally, a {-free element
© of the incarnation |G| of a behaviour G (if any) enjoys the following property:
given ® € |G, [, ®']] = Daimon, and since D is t-free, 1 must occur in D’
Hence, we have what we required of designs-as-proofs in Sect. 10.3.3; ® wins in
every possible interaction with elements of the incarnation of the orthogonal of the
behaviour which it belongs to. Observe that, if ' € G+ — |G|, [[©, D']] may
diverge; this simply means that ®’ is, so to say, not answering the question raised
by ®, i.e. we are not in the presence of an actual dialogue or game.

In the specific case of implication, we thus proceed as follows. We know that a
ToG ground over B for - A — Bis — I& A(T), where T denotes a constructive
function over B of type A -+ B. Suppose that we have appropriately translated
B onto the Ludics framework.>* Suppose also that the types A and B have been
inductively determined as behaviours G4 and G2. Observe finally that, as already
remarked, interaction, i.e. normalization of cut-nets, is a deterministic procedure.

Let us indicate with |G| and |G 8| the sets of the T-free elements of |G| and
|GB| respectively. Given © € |G4|F, and given ©’ such that [[D,D']] € |GB|F,
we can take [[D, D’']] as the result of a constructive function of type A - B. Hence,
we put

A — B={® |forevery D € |G*|F, [[D,D]] € |G|} .

We must take the bi-orthogonal, because we have no guarantee that the above
mentioned set is a behaviour. On the other hand, it holds that, for every set of
designs E, E* is a behaviour. Such technical move has no disturbing effect. We
can understand the bi-orthogonal as the interaction-closure of the set as such.
Furthermore, the elements of A — B are designs of base « ~ S, where - « is
the base of G4 and I B is the base of G5 .40

39 An example of how atomic types can be put in Ludics is given again by Sironi (2014a,b) for the
types N and List.

40 Strictly speaking, what we have defined here is the linear arrow —o, which is usually done by
putting A — B = A+ % B. However, our definition is equivalent to the standard one, except that
it takes the advantage of not passing through ® — which would have required the introduction of
many new notions and definitions. Observe also that the idea of defining a type as a set closed
under bi-orthogonality is quite standard in Linear Logic frameworks, in particular in the Geometry
of Interaction program, as remarked in Naibo et al. (2016).
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So, — I£4(T) can be understood as a -free element ® of |[A — B|. Observe
that, for every ® € |G4|F, inductively corresponding to a ground g over B for
A, the cut-net with © and ®’ can be taken as the non-canonical term — E(—
1E4(T), g), denoting a ground over 9B for - B. The application of ®’ to ®© produces
an interaction [[©, ©’]] that ends in an element of |GZ| 5.

We quickly outline a concrete — although very simple — example of translation.
Consider the orthogonal of the behaviour T introduced in Sect. 10.3.3, i.e. the
behaviour containing only the Daimon. Call it 0. Consider now the following
recursive design (called Fax):

EFGXE.H—S.:’
£k Ei
(&1
HETE
, Pr(N))
ire &, Pr(N)

Fax is the Ludics interpretation of the identity axiom in sequent calculus. It is a
T-free element of the incarnation of any behaviour A — A. In particular, it is an
element of the behaviour 0 — 0. In fact given the only material design in O with
base & — observe that this design is not T-free — the normalization between Fax and
this latter gives a Daimon based on &’, which is again a material design in 0. We
thus interpret the term — & 0(£9) of ToG as Fax in (0 — 0). A similar translation
may be applied — with some more machinery — to any A, taking a f-free material
element of the incarnation of A as inductively corresponding to a ground for - A.

However, we remark that, because of the first difference we have highlighted in
Sect. 10.4.1 between ToG and Ludics, the indicative mapping we have proposed can
work only for linear terms of ToG, i.e. terms where every occurrence — [/ binds
exactly one typed-variable. An extension should take into account what we have
already said in the same Section about intuitionistic implication. That is, we need
a Ludics interpretation of the modality operator !, and then we can take A — B as
(!A) — B. Since we want designs to be cut-free, this should be done following the
work of Faggian and Basaldella*! rather then Terui with C-Ludics.*?

If one accepts our reconstruction above of a ToG type as a behaviour, and of a
ToG ground as a {-free element of the incarnation of a behaviour, one also easily
notices that a type contains more than grounds. Grounds are designs that win in
every relevant interaction, but the behaviour they belong to may contain designs
with paralogisms or designs losing in some interactions. Thus, we could simply
define Cozzo’s ground-candidates, discussed in Sect. 10.2.5, as generic elements
of a behaviour which are pseudo-ground if they are not f-free or do not belong
to the incarnation of the behaviour. In this way, a ground-candidate would be a
structure representing one’s strategy in a dialogue or game, which might win in
some contexts, but lose in others.

41 See Faggian and Basaldella (2011).
42 See Terui (2011).
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10.5.2 Cozzo’s Ground-Candidates Reconsidered

Let us now turn back to Cozzo’s fourth objection to the old formulation of ToG
discussed in Sect. 10.2.4. Prawitz’s definition implied that only valid inferences
were inferences, and according to Cozzo this is misleading in that necessity of
thought, what Prawitz aims at explaining, can be experienced also in inferences
with mistaken premises. To take into account this phenomenon, Cozzo suggests the
introduction of ground-candidates, representing a reasoning with possibly mistaken
premises, so that a ground-candidate is either an actual ground, or just a pseudo-
ground. Cozzo’s view seems to involve three aspects that we had better distinguish
now:

1. an inference can be performed on wrong premises;
2. an inference performed on wrong premises can be valid;
3. avalid inference on wrong premises can be epistemically compelling.

Point 1 requires that inferential operations are defined, not only on grounds as
Prawitz’s operations illustrated in Sect. 10.2.2, but also on pseudo-grounds, and
hence, more in general, on ground-candidates. Thus, as in point 2, the inference can
be valid even if what one is in possession of are just pseudo-grounds. What matters
is that, when applied to grounds for the premises, the operation always produces a
ground for the conclusion.

However, for such an inference to be also compelling, as point 3 requires, it
must hold that the inferential operation still produces ground-candidates for the
conclusion when applied to pseudo-grounds for the premises. The result of the
application might be a ground, but we cannot expect it to be so in every case. And
if it were not at least a pseudo-ground, i.e. an epistemic support based on which one
feels entitled — perhaps wrongly — to assert the conclusion, there would be no way to
maintain that the inference has a compelling character. The question is now whether
ground-candidates, in particular pseudo-grounds, can be adequately characterised
within the framework of ToG. We shall argue that they cannot.

The problem with ToG is that entities that are not grounds cannot reasonably
be considered also as pseudo-grounds. This is particularly evident in the case of
ground-terms 7 that denote something which is not a ground for A = B — call it
f(E4). All we know is that, for some ground g for - A, f(g) is not a ground for
+ B. However, for this to be sufficient to conclude that f (&%) is at least a pseudo-
ground for A - B, it seems plausible to require that f(g) is at least a pseudo-ground
for - B.

Now, a possibility that may not be excluded is simply that f(g) either diverges,
ie.

f@) = filf(@) = LUN1(F@)=...=fl..(L(AHFE)..)=...
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or gives rise to a loop, i.e.

f@) = fi(f(®) = LNn(f@)=...= filh(. (.. (2010 @N)..)) = f@.

For example, it has been suggested*® that this is what happens with paradoxes in
a proof-theoretic framework, but without going that far we may consider a “ping-
pong” where f(£4) is defined by the equation

f®=riEg 9

and f1(£4, £4) by the equation

fi(g. &) = f(9).

It is clear that we are not entitled to look at f(g) as a pseudo-ground for - B.
In fact, the computation yields no value, and a computation that yields no value
cannot constitute an epistemic support for — possibly mistaken — assertions. As a
consequence, a modus ponens from A — B and A to B where one is in possession
of — I&4(T) and g, represented by — E(— I&4(T), g), would produce —
according to the definition of — E — the divergent or looping computation f(g).
So, in spite of its validity, it would not be compelling. We may postulate, of course,
that f(g) is an alleged ground for - B, as Prawitz does in response to Cozzo’s
objection. But, as Usberti remarks, this alleged ground is an entity of any kind, and
an assertion based on an entity of any kind can be hardly understood as rational.

Observe that, in the example of divergent or looping computation provided
above, we are not only unable to hit upon a ground for - B. We are even unable
to obtain a canonical object of type B. Thus, an obvious way out may be that of
requiring that, for it to be a pseudo-ground for A - B, f(£4) yields in all cases
canonical objects of type B, although for some ground for - A the canonical object
produced is not a ground, but only a pseudo-ground for = B — where (some or all)
the arguments to which the primitive operation is applied are pseudo-grounds. This
should be generalized to ground-candidates, by requiring that a ground-candidate
for A - B is a constructive function that, for every ground-candidate for - A, yields
a canonical object of type - B. The notion of ground-candidate can be specified by
induction on the complexity of formulas, in the same way as the notion of ground.
For example, in the case of implication the clause would run as follows:

(—=%*) T denotes a ground-candidate for A + B iff — [ EA(T) denotes a ground-
candidate for- A — B.

Accordingly, we should modify our notion of inference, by requiring that operations
on grounds applied in inference steps are only defined on ground-candidates of the

43 See Tennant (1982, 1995). For a critical discussion, see, Petrolo and Pistone (2018) and
Tranchini (2018).
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kind just defined. The modus ponens we have considered above, thus, should not be
accepted as an inference, since in that case — [ has an immediate sub-argument
that stands for a divergent or looping computation.

In this way, we have excluded from the class of ground-candidates all those
entities that are not grounds, and that involve divergent or looping computations.
ToG might be modified so as to fit with this idea, but it is doubtful whether this can
be done without deeply modifying Prawitz’s original project. However, this may
constitute the topic of further works. For the moment, we remark that, morally, the
result we aim to is exactly what we obtain by understanding Prawitz’s grounds as
t-free elements of the incarnation of a behaviour and Cozzo’s ground-candidates
as simple elements of a behaviour. If a design ® belongs to a behaviour A, it
encodes enough information for it to be tested against any design in the behaviour
A+. In particular, this means that © has the “shape” of a normal derivation of A,
independently of whether such derivation actually exists. The inferential pattern that
it is built up is made of primitive steps, independently of whether such steps can be
understood as drawn from initial sequents in a specific formal calculus. Finally,
it is part of its being the element of a behaviour that any interaction of ® with
any element of AL does not give rise to divergent or looping computations. The
interaction produces a value which may be a ground, but which is not necessarily
so. Even in this case, however, the value is still an element of a behaviour, whence
it is typed.

10.6 Conclusion

The philosophical and (indicative) formal bridging between Prawitz’s theory of
grounds and Girard’s Ludics we have proposed seems to allow for a dialogical
reading of the former. There is still the idea of explaining evidence in terms of some
primitive operations that yield normal/canonical objects. Furthermore, evidence
is thought of as obtained by performing constructive acts which correspond to
reduction/cut-elimination over non-primitive steps. However, evidence now stems
from interaction, and since none of the interacting agents might be right, the game
may end up in a ground-candidate that happens not to be an actual ground. A
picture of this kind seems to be difficult to be accomplished within ToG. As we
have seen, attributing types to pseudo-grounds in ToG may be a very difficult task,
which requires deep modifications in Prawitz’s original project. A type for a pseudo-
ground would be nothing but a formal label, and this may not be enough to ensure
that the object is constructed by using inferences that are meaning-constitutive, or
at least meaning-justifiable. This situation is a priori excluded in Ludics, where we
can define a pseudo-ground for A as an element of the behaviour representing A.
Elements of the behaviour are abstract counterparts of cut-free derivations for A,
and this independently of whether any such derivation exists.

Admittedly, our first step in relating ToG and Ludics is very limited. In particular,
in order to relate the two theories in a more credible way, one should be able
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to regain the full “power” of intuitionistic operations into Ludics. We are quite
confident that this can be done in the frame proposed by Faggian and Basaldella*!
Even if Ludics with repetitions does not enjoy all the properties of the version of
Ludics we have referred to here, it still does enjoy the ones that are central for our
philosophical discussion.
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Chapter 11 ®
Predicativity and Constructive Qs
Mathematics

Laura Crosilla

Abstract In this article I present a disagreement between classical and constructive
approaches to predicativity regarding the predicative status of so-called generalised
inductive definitions. I begin by offering some motivation for an enquiry in the
predicative foundations of constructive mathematics, by looking at contemporary
work at the intersection between mathematics and computer science. I then review
the background notions and spell out the above-mentioned disagreement between
classical and constructive approaches to predicativity. Finally, I look at possible
ways of defending the constructive predicativity of inductive definitions.

Keywords Inductive definitions - Predicativity - Constructive mathematics -
Vicious circle principle - Invariance

11.1 Introduction

Constructive mathematics is a form of mathematics which uses intuitionistic rather
than classical logic. Different varieties of mathematics based on intuitionistic logic
have been proposed over the years since Brouwer’s inception of intuitionism. In
the following, “constructive mathematics” denotes “Bishop—style” mathematics, the
mathematics based on intuitionistic logic initiated by Errett Bishop in “Foundations
of constructive analysis” (Bishop, 1967).! Constructive mathematics has since
witnessed substantial advances in analysis, topology and algebra. Starting from the
1970s, a number of formal systems have been proposed to codify or formalise this
form of mathematics. Their aim was to isolate the principles underlying constructive

! See Bridges and Richman (1987) for an introduction.
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mathematics’ fundamental concepts, especially its concepts of set and function.
Among these systems are Martin-Lf Type Theory and Constructive Set Theory.?

In this article, I consider one aspect in which constructive and classical foun-
dations of mathematics differ. Constructive set and type theories diverge from
standard classical set theories such as Zermelo-Fraenkel set theory in two distinct
respects: they employ intuitionistic rather than classical logic and they comply
with a form of predicativity. Predicativity is my main objective, as I compare a
prominent classical approach to predicativity with the form of predicativity that we
find in constructive foundational systems. My focus is therefore not a comparison
between constructive systems and standard classical foundations such as ZFC, rather
a comparison between two distinct proposals for developing mathematics on the
basis of a predicative concept of set. In so doing, I shed some light on the very
notion of predicativity constructive systems contrive, which is not fully spelled out
in the relevant literature.

In the following, I focus on a disagreement between standard classical and con-
structive approaches to predicativity. This regards the predicative status of so-called
generalised inductive definitions. An inductive definition defines a set, say X, by: (i)
identifying some initial elements of X; (ii) specifying new elements of X in terms of
elements already included in it and (iii) finally adding that nothing else belongs to X.
Inductive definitions are clearly appealing from a constructive point of view, as they
present a set as if it were constructed step-by-step from below. The metaphor of a
step-wise generation of a set from below is also often employed to convey the notion
of predicative definition of a set, i.e. of a definition that is not viciously circular.
While salient inductive definitions are considered constructive, their predicative
status is disputed. According to constructive approaches to predicativity, such as
the one developed in Martin-Lof type theory, generalised inductive definitions are
acceptable. They are, however, impredicative according to a well-known classical
approach to predicativity.?

The remarkable feature of this disagreement is that constructive approaches to
predicativity may be seen as more “generous” compared with standard classical
approaches to predicativity. This fact is at first sight surprising, since we usually
expect constructive foundations to be more restrictive than their classical coun-
terparts. Constructive foundations are indeed substantially more restrictive than
impredicative foundations such as ZFC, in the sense that they do not countenance

2 See e.g. Martin-L&f (1975), Myhill (1975), Aczel (1978), Martin-Lof (1984), Beeson (1985).
Another approach to the foundations of constructive mathematics is Feferman’s Explicit Math-
ematics, which has been studied especially in proof theory (Feferman, 1975). A very recent
development is Homotopy Type Theory (Univalent Foundations Program, 2013).

3 As further clarified in Sect. 11.4.1, the debate on the predicative status of inductive definitions
has focused on generalised inductive definitions. In the following, unless otherwise stated, I omit
the qualification “generalised”.
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impredicative and essentially non-constructive methods of proof.* However, if we
consider predicative approaches to foundations, the standard classical approach
elaborated, for example, by Kreisel, Feferman and Schiitte turns out to be more
restrictive compared with the constructive one, and the key difference is its rejection
of generalised inductive definitions. This observation can be made precise by
employing fundamental results in ordinal analysis, a branch of proof theory. By
carefully assigning ordinals to formal theories, proof theorists have devised means
of comparing theories in terms of their “proof-theoretic strength”. An outcome
of that research is that constructive theories such as Martin-Lo6f Type Theory and
Constructive Zermelo Fraenkel set theory countenance systems which are proof-
theoretically much stronger than classical theories that have been devised to codify
(classical) predicativity. Crucially, these constructive systems have the resources to
express generalised inductive definitions.’

This disagreement between classical and constructive forms of predicativity is
pivotal for an understanding of predicativity and for an assessment of its significance
within the foundations of mathematics. Inductive definitions play a substantial
role within the contemporary constructive practice, as they are a fundamental
component of constructive sets and type theories and also play a major role within
constructive proof assistants such as Coq (The Coq Development Team, 2020). For
this reason, an analysis of the foundational status of these definitions is timely and
valuable. Surprisingly, the relevant literature does not offer, as far as I know, a sharp
delineation of the notion of constructive predicativity. More specifically, there is
no detailed philosophical comparison between classical and constructive forms of
predicativity nor an analysis of the above-mentioned disagreement between classical
and constructive forms of predicativity. As (generalised) inductive definitions are
considered a crucial component of constructive predicativity, an analysis of this
disagreement between classical and constructive forms of predicativity is bound to
shed light on the very notion of constructive predicativity and contribute to a more
precise characterisation of this notion. For these reasons, a fundamental step into
a philosophical investigation of constructive predicativity has to be an explication
of the disagreement between classical and constructive approaches to predicativity
over the status of generalised inductive definitions.

In the first part of this article, I begin by offering some motivation for an
inquiry into the predicative foundations of constructive mathematics, by looking at
contemporary work at the intersection between mathematics and computer science. I
then review the background notions and spell out the above-mentioned disagreement
between classical and constructive approaches to predicativity. In the second part of
this article, I look at possible ways of defending the constructive predicativity of

4 Arguably, from a different perspective, constructive systems are more flexible and less restrictive
than traditional classical systems such as ZFC, as they allow for a variety of interpretations,
including computational interpretations (see Sect. 11.2). See also Bridges and Richman (1987).

5 See Martin-Lof (1984), Aczel (1986), Palmgren (1992), Dybjer (2000), and Dybjer and Setzer
(2003).
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inductive definitions. Due to space constraints, I can only quickly sketch the main
ideas. My proposal is to explore and further expand ideas on predicativity first put
forth by Poincaré and Weyl at the turn of the twentieth century, as they seem to offer
a plausible route leading to the claim that inductive definitions are predicative from
a constructive perspective. I also highlight the importance of clarifying whether the
underlying logic, classical or intuitionistic, may have a role to play in assessing the
predicative status of inductive definitions. A full assessment of the complex question
of whether generalised inductive definitions are constructively predicatively justified
but classically predicatively inadmissible will have to be postponed to another
occasion. My hope at present is to generate some discussion on this important
question and, more generally, on the very notion of constructive predicativity.

11.2 Motivation: Constructive Mathematics as Algorithmic
Mathematics

One of constructive mathematics’ most significant characteristics is that its theorems
afford a computational or “algorithmic” interpretation: they can, at least in principle,
run on a computer. Bishop’s pioneer realisation that the exclusive use of intuition-
istic logic could endow mathematical theorems with computational meaning has
been vindicated in recent years. In fact, constructive mathematics and, especially,
constructive type theory, have been fundamental source of inspiration for the theory
and the applications of computer aided mathematics. One of the main instruments
in this thriving area of research are proof assistants, i.e. computer software which
is used interactively to formalize mathematical proofs. In recent times large and
complex proofs of mathematical theorems, such as the Four Colour Theorem in
graph theory and the Feit-Thompson Theorem in finite group theory have been
implemented in such systems.°

Proof assistants are primarily used to completely formalize proofs and check their
correctness. This is no trivial work, as a thorough formalization of a straightforward
theorem requires not only to fill in all the gaps routinely left out in an informal proof
and correct possible mistakes, but also formalize substantial portions of mathematics
in view of all the background definitions and results the theorem depends on. It also
involves subtle choices on how to best formalize individual components of a proof.
In addition to this “primary” application within mathematics the formalization
of mathematical proofs has other uses, which are attracting renewed interest for
this area of research. For example, proof assistants are also applied to verify the
correctness of computer software. A further emerging area of research looks at
utilizing proof assistants to “extract” computer programs from fully formalized

6 See, for example, Martin-Lof (1982), Coquand and Huet (1986), Constable and et al. (1986),
Nordstrom et al. (1990), Gonthier (2008), AGDA (2020), and The Coq Development Team (2020).
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proofs. Here constructive proofs have been the main focus so far, as we can make
use of their interpretation as algorithms to produce real-life, working programs.

The extensive research on proof assistants, motivated as it is by a number of
applications, is bound to have a considerable impact within mathematics. Mathe-
matical proofs are becoming increasingly complex and large. Computer systems
that check the correctness of proofs are therefore likely to become a significant
part of everyday mathematics. The hope is that computer systems could over time
help us not only check existing large proofs, but also find new ones and develop
effective proof strategies. Since constructive type theories (both predicative and
impredicative) are at the heart of some of the most widely used proof assistants
(e.g. Coq) these new developments may change significantly the perceived position
of constructive mathematics within the mathematical community, granting it a more
central role. For these reasons it is necessary that the philosopher of mathematics
reflects on constructive mathematics and its philosophical motivations and compares
it with the better-known classical practice.

Predicativity is a crucial component of foundational systems such as Martin-
Lof type theory. The form of predicativity that we find in this theory combines the
availability of a quite general form of inductive definitions (e.g. in the guise of so-
called W types) with a strong form of Curry-Howard correspondence.” The latter
endows the logical constants with a direct computational meaning which is key
to the theory’s role as programming framework, as clarified in Martin-Lof (1982).
This interpretation of the logical constants, however, turns out to be incompatible
with impredicativity, as demonstrated by Girard’s paradox.® Martin-Lof’s way out
of paradox was to abide to a form of predicativity while enriching the theory with
powerful type constructing devices, i.e. W types and reflecting universes.’

Predicativity is widely discussed from a technical point of view also within the
Coq community. While the calculus of constructions (i.e. the type theory on which
the Coq system is founded) features a strong form of impredicativity, recent versions
of Coq have restricted this impredicativity so to gain more flexibility and ease
compatibility with mainstream mathematics. Given the varieties of applications of
proof assistants, it is important to allow for the possibility of adding assumptions
that enable the formalization of different forms of mathematics, such as, for
example, the axiom of choice or the principle of excluded middle, which are
required to formalise standard classical mathematics. It is here that the notion

7The W type constructor is used to codify well-founded trees in type theory. It can therefore be
used to codify Brouwer’s constructive ordinals (see Sect. 11.4.1). The Curry-Howard correspon-
dence, also known as “formulas-as-types” correlates intuitionistic logic with type theories. See
e.g. Troelstra (1999) for details and Crosilla (2019) for an informal discussion of its relation with
predicativity.

8 This paradox affected an early variant of type theory, which included a type of all types. See
Girard (1972). See also Coquand (1989) and Martin-L6f (2008) for analysis and Crosilla (2019)
for philosophical reflections.

9 Universes in Martin-Lof type theory are powerful constructs which act as reflection principles.
Roughly a universe is a type closed under certain type-forming operations.



292 L. Crosilla

of predicativity (in the form of syntactic constraints that block specific forms of
impredicativity) has proved useful.'”

As (generalised) inductive definitions are increasingly employed within the
computer aided formalization of mathematics and are considered predicative there
and within constructive mathematics, a clarification of their predicative status
becomes particularly urgent. In this context, the disagreement between alternative
approaches to predicativity that was mentioned in the Introduction becomes partic-
ularly significant. In the next section, I review the standard classical approach to
predicativity which emerged from fundamental work in proof theory, before turning
to the constructive case in subsequent sections.

11.3 Predicativity Given the Natural Numbers: The Classical
Approach

The notion of predicativity emerged at the beginning of the last century within
Poincaré and Russell’s analysis of the set-theoretic paradoxes.!! The analysis
identified a form of vicious circularity as source of the paradoxes. This circularity
is manifested in problematic impredicative definitions which attempt to define
mathematical entities in a circular way, e.g. by specifying an element of a collection
in terms of all the elements of that collection. Adherence to predicativity was
therefore proposed as an instrument for avoiding vicious circularity in definitions
and, in this way, stay clear of paradoxes. Russell introduced his well-known
“Vicious—Circle Principle” (VCP), according to which no totality can contain
members only definable in terms of this totality.'”> Russell’s technical solution to
the difficulty was ramified type theory, designed to ensure full compliance with
the VCP.!> The main idea of ramified type theory is to define sets (i.e. types)
by introducing simultaneously two kinds of regimentation: type levels and orders.
The latter regiment propositional functions so to ensure that properties defined in
terms of the totality of properties of a given order belong to the next higher order.
The interplay of these restrictions aims at avoiding the occurrence of the perceived
problematic circularity in definitions. Avoiding vicious circularity in analysis was

10 In Coq there are two sorts (i.e. categories) of objects “Prop” and “Set”. Both had impredicative
features in early versions of the system, so that, for example, one could quantify over all Sets
to define a new set. Recent versions, however, retain an impredicative “Prop” but abandon the
impredicativity of “Set”. These new restrictions are introduced to increase compatibility with
classical mathematics (see e.g. Barbanera and Berardi (1996)).

11 See, for example, Poincaré (1905, 1906a,b), Russell (1906a,b, 1908) and Poincaré (1909, 1912).

12 Russell and Whitehead gave a number of renderings of the VCP. For example, “no totality can
contain members defined in terms of itself” (Russell, 1908, p. 237) and ”’[. .. ] whatever in any way
concerns all or any or some of a class must not be itself one of the members of a class” (Russell,
1973, p. 198). See also Godel (1944) for an influential discussion, especially p. 454-5.

13 See Russell (1908) and Whitehead and Russell (1910-1913).
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also Weyl’s aim in “Das Kontinuum” (Weyl, 1918), where a highly original and
influential predicative treatment of analysis was undertaken without recourse to
ramification.'*

Following Poincaré and Russell, (im)predicativity is usually characterised as
follows:

(i) adefinition is impredicative if it defines an entity in terms of a totality to which
the entity itself belongs; it is predicative otherwise.

(ii) a mathematical entity (e.g. a set) is impredicative if it can only be defined by an
impredicative definition; it is predicative otherwise.

The qualification “only” in clause (ii) is important. This clause states that an
entity is predicative provided that it affords a predicative definition. Since it is
common for a mathematical entity to be defined in a number of equivalent ways,
an entity is considered impredicative as long as no alternative predicative definition
of it is available. Extensive work in mathematical logic in recent years has shown
that many apparently impredicative notions in analysis can be reformulated so
to afford predicative treatment.'> This work is complex, as one typically needs
to re-frame one’s definitions to avoid impredicativity. Sometimes this requires
the redevelopment of a substantial portion of mathematics. Weyl’s book “Das
Kontinuum” (Weyl, 1918) sets out a fundamental example in this respect, as it shows
how to carry out large portions of analysis from a predicative point of view.

Of special interest in the present context are developments that took place from
the 1950s, when prominent logicians undertook a precise formal analysis of predica-
tivity. Only the most general points of that development are needed for the present
discussion.'® Among these new developments, one course of thought brought to
what is often termed “predicativity given the natural numbers” (Feferman, 2005).
From a technical point of view, this may be seen as a continuation of both Russell’s
ramified type theory and Weyl’s predicative analysis. It takes the VCP as the main
guiding principle and further develops Russell’s idea of ramification. It also takes the
natural numbers as ‘given’, while introducing predicatively motivated constraints
on subsets of the natural numbers, as Weyl did. The thought is that the natural
numbers are unproblematic and safe, but sets of natural numbers need to be defined
predicatively to avoid vicious circularity. Importantly, as in Weyl’s (1918) booklet
and in Russell’s type theory, one uses classical logic throughout.

Notwithstanding these similarities, there is a significant difference with Weyl’s
predicativism. The aim of the logical analysis of predicativity was not a predicative
foundation of analysis, with the consequent abandonment of those parts of analysis
that could not be rephrased in purely predicative terms. The main focus was rather
a clarification —from the outside so to speak— of the limit of predicativity: how far

14 See Sect. 11.4.3.1 for more on Weyl (1918).
15 See e.g. Feferman (1988, 2004, 2013b) and Simpson (1988, 1999).

16 Some of the most significant steps in that development are recalled in Feferman (2005). See also
Dean and Walsh (2016) and Crosilla (2017).



294 L. Crosilla

can we reach if we take a predicativist stance? This question was approached along
two main dimensions: (1) by using mathematical logic to determine the limit of
predicativity and (2) by a case by case study of ordinary mathematics to assess
which parts of it can be given predicative treatment. A further difference with
Weyl is that the new attitude as well as the more refined logical instruments in the
meantime available brought the logicians to go beyond Weyl’s predicative analysis,
by contemplating transfinite iterations of ramified comprehension along so-called
predicative ordinals. Through fundamental contributions by Kreisel, Feferman
and Schiitte the “logical analysis of predicativity” gave rise to an exemplary
chapter in proof theory, which culminated with the determination by Feferman
and Schiitte (independently) of the [limit of predicativity by means of ordinal
analysis.!’

Ordinal analysis uses proof-theoretic techniques to assign ordinals to theories as a
way of assessing and comparing their strength. The proof-theoretic analysis of pred-
icativity of the 1960s made use of a transfinite hierarchy of subsystems of second
order arithmetic with ramified comprehension (also called ramified analysis). The
main idea is that each system allows for a ramified form of comprehension, thus
only “referring” to entities populating earlier stages of the hierarchy. This ensures
that each level of the hierarchy is predicatively justified. Crucially, the hierarchy is
indexed by ordinals and a substantial contribution of this analysis was a proposal on
how far along the ordinals we may proceed without stepping into impredicativity.
To this end, the notion of predicatively provable ordinal was introduced with the
intention to capture the concept of an ordinal a predicativist would recognize.
Roughly, predicatively provable ordinals can be defined “from below” through a
bootstrapping process: one progresses along the ramified hierarchy to a theory
indexed by an ordinal « only if one has already proved that « is an ordinal in a
“previous” theory within the hierarchy. This hierarchy of formal systems then acted
as canonical reference: one considers predicative any formal system which can be
reduced to a system in that hierarchy (according to a formally specified notion of
proof-theoretic reduction). The so-called limit of predicativity was then identified in
terms of an ordinal known as I'g, the first non-predicatively provable ordinal.'®

17 See Kreisel (1958), Feferman (1964), and Schiitte (1965a,b). Note that this is not the only logical
analysis of predicativity proposed in the 1950-1960s. Another approach (Kreisel, 1960) made
essential use of work in recursion theory and definability theory, and identified the predicatively
definable sets of natural numbers with the so-called hyperarithmetical sets. Here work by Kleene,
among others, provided fundamental insights and the necessary tools for the analysis. See
Moschovakis (1974) for the relevant notions, historical notes and references.

18 Schiitte’s fundamental contribution to this analysis of predicativity is acknowledged by Fefer-
man (2013a, p. 8-9) as follows: “[...] the determination by Schiitte and me in the mid-1960s of
I'o as the upper bound for the ordinal of predicativity simply fell out of his ordinal analysis of
the systems of ramified analysis translated into infinitary rules of inference when one added the
condition of autonomy.”
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The logical analysis of predicativity therefore made a clear and precise proposal
for a formal analysis of predicativity, employing state of the art logical machinery
to extend Russell’s and Weyl’s work.

11.4 Constructive Predicativity and Inductive Definitions

A number of formal systems have been introduced over the years to formalise
constructive mathematics. It is common to distinguish two kinds of systems:
impredicative systems such as Intuitionistic Zermelo Fraenkel set theory and
the Calculus of Constructions (Friedman, 1973; Coquand and Huet, 1986), and
predicative systems, such as Martin-Lof Type Theory and Constructive Zermelo
Fraenkel set theory (Aczel, 1978; Martin-Lof, 1975). While the latter theories
are said to be predicative, the literature does not offer a sharp delineation of
the relevant notion of predicativity, nor is there an authoritative analysis of this
notion comparable to the insightful appraisal given over the years in the classical
case, especially through the work of Feferman.!” There is agreement among
constructive mathematicians on paradigmatic examples of impredicativity: as in the
classical approach to predicativity discussed above, the powerset of an infinite set
is considered impredicative, and so is full second order arithmetic. Other forms
of higher order quantification (e.g. over so-called “propositions” in type theory)
are also considered impredicative. Moreover, there is overall agreement in the
literature that some generalised inductive definitions are constructively predicatively
justified.?” In fact, the acceptance of (at least some) generalised inductive definitions
is often taken to be the main characteristic distinguishing the constructive from
the classical approach to predicativity discussed in the previous Section. In fact,
according to classical predicativity given the natural numbers generalised inductive
definitions are impredicative, on the basis of proof-theoretic results.

In the following, I first review the notion of generalised inductive definition
and then investigate why it is considered problematic from a classical predicativist
perspective but may be considered unproblematic from a constructive point of view.

19 For discussion see Coquand (1989), Dybjer (2012), Palmgren (1998) and Rathjen (2005).

20 Note that while my focus in this note are intuitionistic theories, Lorenzen and Myhill have argued
for a rather liberal notion of predicativity with respect to a quite general notion of constructivity
(also in the context of theories with classical logic). See especially (Lorenzen, 1958; Lorenzen and
Myhill, 1959). See also Wang (1959). For Martin-Lof type theory, see e.g. Palmgren (1998) and
Rathjen (2005).
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11.4.1 Inductive Definitions

Inductive definitions were used in constructive mathematics from the very start
as witnessed, for example, by Brouwer’s constructive ordinals. In mathematical
logic, inductive definitions gained particular relevance from the 1950s especially
in recursion theory and in proof theory.”! A principal reason for the focus on
inductive definitions in proof theory was Kreisel’s hope that the study of formal
theories for inductive definitions could clarify whether Spector’s 1961 proof of
consistency of second order arithmetic could be constructively justified. In fact,
it turned out that such theories are not sufficiently strong to accomplish this task,
as their proof-theoretic strength is strictly in between the strength of predicative
theories (according to the I'g analysis) and full second order arithmetic. However,
the proof-theoretic investigation of theories of inductive definitions gave rise to
crucial advances in ordinal analysis and was also key to the proof-theoretic study
of prominent impredicative subsystems of second order arithmetic.?>

Today inductive definitions figure prominently in Martin-Lof type theory, for
example in the form of well-founded trees, which are defined by employing the
so-called W type constructor. In the case of type theory, the combination of well-
founded trees and universes (i.e. reflection principles) endow this theory with
considerable proof-theoretic strength, well exceeding the strength of theories in
the ramified hierarchy up to I'g. Martin-Lo6f type theory therefore includes systems
whose proof-theoretic strength well exceeds the realm of predicativity given the
natural numbers.”> Recent years have also seen frequent application of inductive
definitions in constructive mathematics. For example, they have been successfully
employed in formal topology (Coquand et al., 2003; Sambin, 1987) to circumvent
the ubiquitous use of the powerset operation. As already mentioned in Sect. 11.2,
inductive definitions are also extensively used in the formalization of mathematics
within theorem provers such as Coq. One reason for this is that inductive definitions
offer a uniform way of characterising a number of type constructions, avoiding the
proliferation of primitive types. For example, given a general scheme for inductive
definitions, one can apply it to define the natural numbers, without assuming a
primitive type of natural numbers.>*

An inductive definition defines a set, say X, by identifying some initial elements
of it and specifying all the remaining elements of X in terms of elements already
included in it. It may be helpful to see how one usually characterises inductive
definitions from a standard set-theoretic perspective. Here an inductively defined

21 See the fundamental (Barwise, 1975; Moschovakis, 1974).

22 See Buchholz et al. (1981). The introduction gives an insight into the historical developments of
ordinal analysis beyond predicativity. See Chapter 1 for background. See also Feferman (2013a);
Martin-Lof (2008).
23 See e.g. Palmgren (1992, 1998), Rathjen et al. (1998), Dybjer (2000), Dybjer and Setzer (2003)
and Rathjen (2005).

24 See Dybjer (2012) for discussion and references.
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set may be seen as the least fixed point of a monotone operator. For our purposes,
it suffices to focus on the case of inductive definitions of sets of natural numbers.?
LetI" : P(N) — P(N) be an operator (or function) from the power set of the natural
numbers to the power set of the natural numbers and let X, Y € P(N). We say that
I" is monotone if:

XCY—>TI(X)CI(y).
X is I'-closed when
rx c Xx.

For monotone T', it is easy to show that there is the smallest I"-closed set, also called
the fixed point of T":

Ir = ﬂ{X : X is I'-closed}.

The constructive appeal of inductive definitions is due to the fact that they can
be thought of as constructing a set step-by-step and from below. This metaphor of a
bottom-up construction can be made more precise by using the ordinals to index the
stages of the least fixed point of a monotone operator. One starts from stage 0 and
successively applies the operator I" to go from one stage to the next. More precisely,
given I" as above, and IT its least fixed point, the a-stage of It is:

g =r(J ).

B<a

The crucial point is that, at the price of taking the classical ordinals as given, an
inductively defined set can now be presented as the closure of a step-by-step process
of generation, so that each stage is the result of applying the operator to a previously
generated fragment of the set.

The reference above to the classical ordinals, however, is problematic from
a constructive perspective. Another way of presenting inductive definitions may,
however, be more appealing from a constructive perspective. This is in terms of a
set of rules that specify the elements of an inductively defined set. Typically, one
starts from some initial elements and then gives rules that yield new elements of a
set from “previously constructed” elements of it. The least set closed under these
rules is then the set inductively defined by them.?®

25 See the exposition in Buchholz et al. (1981), Chapter 1.

26 See Aczel (1977). Particularly appealing from a constructive point of view are deterministic
rules. A rule is deterministic if for any conclusion a there exists exactly one set of premises X such
that a is a consequence of X according to the rule.
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The simplest example of inductive definition of an infinite set is the inductive
definition of the set of natural numbers as the smallest set containing 0 and closed
under the successor operation. One has the following introduction rules:

1. 0is a natural number,
2. if n is a natural number, then its successor, suc(n), is also a natural number.

Taking the natural numbers to be the smallest set satisfying these rules, amounts
to adding the claim that nothing else is a natural number. The latter clause is
expressed by the principle of mathematical induction, which is often formulated
as an elimination rule complementing the introduction rules.

The example of the inductive definition of the natural numbers is here chosen
for its simplicity. As already mentioned, both predicativity given the natural
numbers and constructive predicativity take the natural numbers as unproblematic,
as given, and introduce predicatively motivated constraints on subsets of the natural
numbers.2’” The inductive definitions that rise concerns from a standard (classical)
predicativist perspective are those that go beyond the natural numbers, like, for
example, the definition of the constructive ordinals. The latter can be defined by
the following introduction rules:

1. 0isin O,

2. ifa isin O, then suc(a) isin O,

3. if f is a function from the natural numbers, N, to O and for all n in N, f(n) is in
O, then the supremum of the f(n) is in O.

While the inductive definition of the natural numbers is finitary, in the sense
that each rule has only finitely many premises, the definition of the constructive
ordinals is an example of infinitary inductive definition. Note also that the definition
of the constructive ordinals builds on the definition of the natural numbers. One can
further iterate this process and build a new inductive definition on the basis of the
constructive ordinals, and so on. In this way, the so-called “higher tree classes” can
be defined inductively.”® Generalised inductive definitions include definitions such
as that of O and also countenance iterated inductive definitions.

The proof theory of inductive definitions has focused on formal theories that
codify generalised inductive definitions. These formal theories extend Peano Arith-
metic by introducing predicates for so-called positively definable operators. Here
the positivity of the relevant predicates is required to ensure the monotonicity of
the operators they define.?’ Theories, based on intuitionistic logic (i.e. extensions

27 Note that while the forms of predicativity considered in this article take the natural numbers
as unproblematic, this assumption is not gone unchallenged. Dummett, Nelson and Parsons
have (independently) argued for the impredicativity of the principle of mathematical induction
(Dummett, 1963; Nelson, 1986; Parsons, 1992). Nelson (1986) develops a form of predicative
arithmetic that substantially constrains mathematical induction, therefore giving rise to weak
subsystems of Peano Arithmetic.

28 See Buchholz et al. (1981, p. 147).

29 See Buchholz et al. (1981, Chapter 1).
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of Heyting Arithmetic) have also been considered and have played a crucial role
in the proof theoretic analysis. In practice, theories of inductive definitions have
acted as systems of reference in the proof-theoretic analysis of inductive definitions,
therefore playing a similar role in this context as systems of ramified analysis for
the proof-theoretic analysis of predicativity. A well-known theory which formalises
non-iterated inductive definitions goes under the name of 7 Dj. Stronger theories
have been introduced to codify iterated inductive definitions. As already mentioned
at the beginning of this section, the proof-theoretic analysis of theories of inductive
definitions shows that their proof-theoretic strength exceeds that of predicative
theories according to the I'g analysis (Buchholz et al., 1981). This is the case already
for the theory I D, whose proof-theoretic ordinal, the so-called Bachmann-Howard
ordinal, is much larger than I'y.

11.4.2 The Impredicativity of Generalised Inductive Definitions

Generalised inductive definitions are considered impredicative according to the
logical analysis of predicativity mentioned in Sect. 11.3. The worry is that in the
build up of an inductive set we need to refer to the very set we are defining, thus
contravening the VCP. In the terminology introduced in the previous section, the
main difficulty lies in the claim that the inductively defined set we are defining is the
least fixed point of the given inductive definition. This worry is particularly evident
when we look at the standard set-theoretic presentation of inductive definitions. If
we take the set-theoretic definition of the least fixed point of an inductive definition
as the intersection of all I"-closed subsets of N, for some monotone operator I', then
the difficulty is obvious: we define a subset of the natural numbers by reference to a
collection of subsets of the natural numbers to which it belongs, against the VCP.
Arguably, one of the main benefits of the logical analysis of predicativity is that
it has revealed that apparently impredicative notions of ordinary mathematics could
after all be given a predicative treatment. As a consequence, a prima facie impred-
icativity could be eliminated. We could then explain a prima facie impredicativity
as a by-product of its codification within a certain conceptual framework (e.g. set
theory). One could hope that similar considerations could also be applied to the
case of inductive definitions: while the set-theoretic framework strongly suggests the
impredicativity of inductive definitions, a more careful analysis could perhaps offer
a different verdict (at least in the case of the inductive definitions the constructivist
cares about). For example, one could hope that an idea mentioned towards the end of
the previous section could help defuse the impredicativity of inductive definitions.
There we saw that the classical ordinals can be used to index the stages of the
least fixed point of an inductive definition. The ordinals, in other terms, can help us
stratify an inductively defined set so that at each step we refer only to “previously”
constructed fragments of it. Borrowing the proof-theorist’s terminology (Buchholz
et al., 1981, p. 262-3), with the help of the ordinals, an inductive definition such as
that of O can be expressed in such a way that it becomes locally predicative, i.e.
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it is predicative at each stage since, locally, we only refer to what has already been
constructed, rather than to the whole set under construction. However, the difficulty
with this strategy is that the ordinals we need to employ in order to index the stages
of the inductive definition cannot be given a predicative justification that would
satisfy the predicativist given the natural numbers. This is confirmed by the proof-
theoretic analysis of theories of inductive definitions which are seen to exceed the
proof-theoretic strength of predicative theories. In other terms, one could claim that
we have local predicativity, but impredicativity as a whole.

Perhaps representing inductive definitions in terms of rules, with no explicit
mention of the classical ordinals, could help explain away their impredicativity. The
worry in this case is that the rules themselves may involve a circularity. In the case
of generalised inductive definitions, in fact, the clause expressing the minimality of
the inductive definition will have no restriction to prevent it from referring to the
very set it inductively defines.>”

These observations can be made fully precise through a careful proof-theoretic
analysis of formal theories for inductive definitions. The main “argument” adduced
for the impredicativity of inductive definitions, therefore, is the fact that the
proof-theoretic strength of theories of inductive definitions exceeds the limit of
predicativity given the natural numbers, captured by the ordinal I'g. In fact, there is
no proof-theoretic reduction of theories of (generalised) inductive definitions to the
systems of ramified analysis, since the former are proof-theoretically much stronger
than the latter. As we saw above, the ramified hierarchy acts as canonical systems
of reference for predicativity given the natural numbers. Therefore, the fact that the
proof-theoretic strength of theories of inductive definitions exceeds the strength of
the whole ramified hierarchy is taken as clear indication that generalised inductive
definitions involve impredicativity.

11.4.3 Predicative After All?

Although inductive definitions are considered impredicative according to pred-
icativity given the natural numbers, they are usually considered constructive and
predicative in the constructive literature. The term “constructive” is notoriously
vague and is routinely applied to a variety of forms of mathematics, often very
different from each other. It is thus perhaps not that surprising that the literature
presents us also with the claim that generalised inductive definitions are construc-
tive, but impredicative. The availability of a set of rules for the generation of the
elements of an inductively defined set is often considered key to the constructivity
of inductive definitions. For example, when inductively defining an infinite set,

30 A “miniature” argument along these lines can be carried out already in the case of the natural
numbers to argue for the impredicativity of the induction principle. This will be discussed in
Sect. 11.4.3.2.
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one does so by means of fixed rules and in a uniform way: by employing some
initial elements of the set and repeatedly applying a uniform procedure to obtain
all the other elements of the set. Crucially, the induction principle associated with
an inductive definition somehow mirrors the construction of the elements of the set.
Hence, the proofs are also likewise structured. This latter point is rightly stressed by
Sieg (Buchholz et al., 1981, Chapter 3, p. 147), when discussing the intuitionistic
theory that formalises the construction over Heyting Arithmetic of the constructive
ordinals. Sieg writes that this theory is constructively justified:
and by that I simply mean that the theory is based on intuitionistic logic, the objects in its

intended model are exhibited or obtained by construction and the proof-procedures follow
or parallel the construction of the objects.

While it is usually agreed that (at least some) generalised inductive definitions
are constructive, it is their predicativity that is controversial (Buchholz et al.,
1981; Feferman, 1964). For example, the inductive definition of O is considered
constructively acceptable, but it is impredicative according to the proof-theoretic
analysis of predicativity. To conclude this section, I sketch some options that a
constructivist could consider to support the view that inductive definitions are after
all not only constructive but also predicative.

11.4.3.1 Invariance

A first option is to link the contemporary discussion on inductive definitions directly
to the original debate on predicativity. The idea is to focus on strong affinities
that exist between the motivation offered today for the predicativity of inductive
definitions and themes that pervade the original debate on predicativity at the
beginning of the twentieth century. I only consider two points, the role of infinity
in this debate and the concept of set, even if an analysis of the relevant literature
suggests further significant similarities.

In Sect. 11.3, T have presented a standard characterisation of predicativity in
terms of lack of vicious circularity. Poincaré also offered another characterisation of
predicativity in terms of a form of invariance, which seems more suitable to capture
the phenomenon of inductive definitions. According to this new characterisation
of predicativity, a predicatively defined set cannot be modified or disordered by
an extension of the class of sets under consideration.®! This characterisation of
predicativity relates to the one in terms of vicious circularity as follows: if we
consider an impredicative definition (in the sense of circular), it would seem to have
the effect of extending or enlarging a set under consideration. Let us see this with an
example. Suppose we are given an impredicative definition of as set X which refers
to (e.g. universally quantifies over) a set G to which X belongs. For this definition
to be meaningful, it would seem that we need first to fix the extent of the set G.

31 See Poincaré (1909, 1912). See also Kreisel (1960, p- 378). Note that I am here interested in the
main ideas underlying this notion, rather than in an exegesis of Poincaré’s thought.
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But then X would be a “new” element of G which therefore extends or disorders G.
Poincaré’s requirement of invariance of mathematical definitions aims at avoiding
definitions of this kind: a predicative (in the sense of invariant) definition does not
disorder a set when new elements are introduced.

Weyl (1918) proposed a detailed predicative foundation of analysis that bears
important analogies with Poincaré’s new characterisation of predicativity. Weyl’s
discussion, like Poincaré’s, is characteristically bound up with a stark rejection of
actual infinity in mathematics, advocating instead a potentialist view of infinity. In
Weyl’s case, this is further directly connected with his explicit rejection of arbitrary
sets. The main idea, which is reminiscent of Poincaré, is that for a correct treatment
of infinite sets, one needs predicative definitions. For Weyl this means that one
defines an infinite set as the extension of some property or relation, which may
be seen as describing a step-by-step process of formation of the set.>? In the case of
analysis, which is Weyl’s main focus in “Das Kontiuum”, sets of natural numbers are
extensions of properties built up step-by-step from the natural numbers by repeated
application of the logical operations and a principle of iteration, with the crucial
restriction of quantification to the domain of the natural numbers. Weyl calls this
process of set-formation “the mathematical process” and contrasts his predicative
concept of set with the dominant concept of set. He writes (Weyl, 1918, p. 20):

Finite sets can be described in two ways: either in individual terms, by exhibiting each of
their elements, or in general terms, on the basis of a rule, i.e., by indicating properties which
apply to the elements of the set and to no other objects. In the case of infinite sets, the first
way is impossible (and this is the very essence of the infinite).

This brings Weyl to reject the meaningfulness of the powerset of an infinite set,
including the set of all subsets of the natural numbers, as it is not amenable to a
general description in terms of exhaustive rules. The open-endedness of infinite sets
means that the powerset of the natural numbers should be defined by rules which
specify all and only its elements. (Weyl, 1918, p. 23) writes:

The representation of an infinite set as a ‘“gathering” brought together by infinitely
many individual arbitrary acts of selection, assembled, and then surveyed as a whole by
consciousness, is nonsensical; “inexhaustibility” is essential to the infinite. [...] Therefore I
contrast the concept of set and function formulated here in an exact way with the completely
vague concept of function which has become canonical in analysis since Dirichlet and,
together with it, the prevailing concept of set.

A remarkable aspect of Weyl’s concept of set is the inductive generation of
the properties of the natural numbers through iterated application of the logical
operations (with restricted quantifiers). Weyl lucidly highlights the crucial role of
this iteration for the mathematical process.

I have emphasised two significant aspects in Weyl’s “Das Kontinuum”: the
objection to the powerset of an infinite set and the role of a potentialist view
of infinity. It is interesting to compare these with more recent discussions on
predicativity. The impredicativity and the arbitrariness of the powerset of an infinite

32 See also Cantini (2022) for discussion.
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set is also exposed in a fundamental article by Myhill (1975), in which the author
sets out the details of a constructive set theory that, notwithstanding its use of
intuitionistic logic, bears strong formal affinities with ZF set theory. Myhill replaces
the powerset axiom of ZF with a constructively weaker axiom of exponentiation,
as the first is seen as lacking constructive justification.’> Myhill’s criticism of the
powerset axiom of ZF is particularly clear, and deserves quoting:

Power set seems especially nonconstructive and impredicative compared with the other
axioms [of set theory]: it does not involve, as the others do, putting together or taking apart
sets that one has already constructed but rather selecting out of the totality of all sets, all
those that stand in the relation of inclusion with a given set (Myhill, 1975, p. 351).

We have here the opposition between, on the one side, the arbitrariness of the
powerset of an infinite set, whose justification seems to require the prior availability
or even surveyability of an infinite mathematical domain, with, on the other side, the
rule-like construction of a set. This strongly resonates with the typical constructive
appeal of inductive definitions, which has been repeatedly stressed above: the rule-
like build up of a set from some initial unproblematic elements. We also saw that
inductive definitions are often introduced today to eliminate problematic uses of
the powerset of infinite sets, almost as if they were computationally approximating
from below as much as possible of the powerset of an infinite set. Furthermore,
the monontonicity of inductive definitions would seem to ensure that at no time the
generation of new elements “disrupts” or modifies earlier fragments of the set — at
least in the sense that what has entered the set at a certain stage cannot leave it at
subsequent stages.

As to the role of potential infinity in Weyl’s analysis, this also has a counterpart
in more recent discussions. In the fundamental (Lorenzen and Myhill, 1959), the
authors introduce (generalised) inductive definitions and argue for their constructiv-
ity. In their conclusion they write that the method of inductive definitions

exhausts those means of definition at present known which are acceptable from a standpoint
which rejects the actual infinite.>*

In view of the rule-like character and the monotonicity of inductive definitions,
as well as these remarkable similarities with recent discussions on predicativity, it
seems at least possible to give a predicative justification of these constructions along
the lines of Poincar¢ and Weyl’s considerations. The challenge here is to sharpen
the notion of invariance in a way that more directly applies to the case of inductive
definitions.®

33 The axiom of exponentiation allows us to collect in a set all the functions from a set A to a set
B. This is constructively weaker than the full powerset (Aczel, 1978; Myhill, 1975).

341 would like to thank a referee for drawing my attention to this passage and to Lorenzen (1958).
35 A thorough discussion of this point would require careful consideration of Lorenzen’s work.
See e.g. Lorenzen (1958). Note that one could argue that the term “predicativity” is now been
used to refer to a different phenomenon altogether compared with that giving rise to the ' limit.
This seems to be Feferman’s point of view in Feferman (1964, p. 4-5), when discussing especially
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11.4.3.2 Logic

The constructivist could explore another, not necessarily disjoint, strategy, by
pursuing the question whether the underlying logic has a role to play in an
assessment of the predicativity of inductive definitions. More specifically, one could
argue that a shift to intuitionistic logic makes a defense of the predicativity of
inductive definitions more plausible.

The idea is to extend to the case of generalised inductive definitions consid-
erations that arise for the inductive definition of the natural numbers. Elsewhere,
I analyse the presuppositions of a predicativist argument for intuitionistic logic
inspired by Dummett’s argument for indefinite extensibility.>® This argument makes
essential use of a claim that mathematical induction involves a form of circularity.?”
In Sect. 11.4.1, we saw the inductive definition of the natural numbers as the least
set containing 0 and closed with respect to the successor operation. The closure
condition for the natural numbers is expressed by the principle of mathematical
induction. Mathematical induction is a fundamental principle in arithmetic, which
enables us to prove universal statements as follows: it suffices to show that a
property, say F, holds of the first natural number, 0, and that it progresses from
a number to the next one, i.e. that if F' holds of #, it also holds of suc(n). Then we
can conclude that F holds of every natural number.

Though the natural numbers are considered unproblematic according to both
forms of predicativity under examination here, one may claim that a thorough
predicativist perspective ought to recognize the impredicativity of the principle of
mathematical induction.’® The worry regarding induction is that this minimality
condition involves a circularity. One way of expressing this concern is by observing
that the principle of mathematical induction is stated for arbitrary properties.
Therefore, it also applies to those properties, F', that refer to the whole set of natural
numbers. In other terms, the formula which describes the property F in the principle
of mathematical induction may contain unrestricted number quantifiers, like, for
example, a universal quantifier ranging over all the natural numbers. The natural
numbers would then be defined in terms of the whole collection of natural numbers,
against the VCP.3*

The thought scrutinised in Crosilla (2020) is that while standard interpretations
of classical quantification require the availability of each element of the domain
prior to quantification over it, giving rise to the difficulties above, an intuitionistic

Lorenzen and Wang’s work on predicativity. I am persuaded this is a complex issue that would
require careful consideration.

36 See Crosilla (2020).
37 See Dummett (1963), Nelson (1986) and Parsons (1992).
38 See e.g. Dummett (1963), Nelson (1986) and Parsons (1992).

39 See Nelson (1986) and Parsons (1992). See also Crosilla (2016, 2020) for a detailed analysis of
the natural number case.
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universal quantifier, at least in some cases, may by given a generic interpretation.*’

More specifically, in an intuitionistic context the “problematic” use of universal
quantification over the natural numbers that we find in the principle of mathematical
induction may be given a generic interpretation. This would seem to suffice to
eliminate the perceived difficulty involved with the circularity of mathematical
induction. The constructivist could hope that considerations of this kind could be
extended to the case of generalised inductive definitions, so to ease the difficulty
with the apparent circularity of the closure condition which was discussed in
Sect. 11.4.2.

11.4.3.3 Trees

In Sect.11.4.2, we saw that a generalised inductive definition can be presented
in stages, indexed by classical (impredicative) ordinals. The constructivist could
employ well-founded trees within an intuistionistic context to play a role analogous
to that of the classical ordinals in the classical context and argue that, constructively,
well-founded trees are directly predicatively justified. This seems to be a view
often put forth by constructive type theorists. For example, Palmgren (1998)
compares predicativity given the natural numbers with “the constructivist notion of
predicativity which recognises a construction as predicative if it has a clear inductive
structure, e.g. W-sets and superuniverses.”*! A constructivist who wished to proceed
along this route, would need to explain what grants, in an intuitionistic context, a
direct justification of the induction principles that express the closure of (at least
some) generalised inductive definition. Perhaps, one could proceed by analogy to
the case of predicativity given the natural numbers. That form of predicativity takes
the natural numbers as given, and in so doing accepts as unproblematic the principle
of mathematical induction. One could perhaps make a similar move in the case
of inductive definitions, claiming that the relevant form of transfinite induction
is predicatively justified at least on the basis of intuitionistic logic. An argument
along these lines could also employ some of the considerations from the previous
subsection, as one may insist that the intuitionistic focus on proofs rather than
objects could make such an assumption more acceptable. Once more, Poincaré
and Weyl’s philosophies of mathematics could also be source of inspiration. Both
mathematicians insisted on the impossibility of giving a reduction of the principle of
mathematical induction. Poincaré appealed to a form of intuition to justify it. Weyl
made very clear the crucial role of the principle of iteration within his predicative
foundation of analysis and in mathematics more generally. One could then explore
the plausibility of an approach to predicativity which takes the inductive definition
of the natural numbers as paradigmatic example of more general forms of inductive
definitions that are taken as given and no further reducible.

40 See also Linnebo (2018).
41 See also Dybjer (2012) and Dybjer and Setzer (2003).



306 L. Crosilla

11.5 Conclusion

In this note, I have offered motivation, stemming from the current mathematical
practice, for an investigation into the notion of predicativity and especially con-
structive predicativity. I have highlighted the role of predicativity in current debates,
and its key role in concrete practical applications, where it acts as a criterion for
the correctness of computation and for consistency. Inductive definitions represent
powerful expressive means of definition, which are increasingly employed in the
constructive practice. In that context, they are usually considered justified not only
from a constructive but also from a predicative point of view. The predicative
justification of inductive definitions, though, requires further thought. One of the
points of concern is the fact that these definitions are impredicative according to the
proof-theoretic analysis of predicativity put forth by Kreisel, Feferman and Schiitte.
More specifically, the proof-theoretic strength of theories of inductive definitions
exceeds by far the proof-theoretic strength of theories which are recognised as
predicative according to that analysis. This leaves open the question of what could
be taken to offer predicative justification to inductive definitions from a constructive
perspective and, therefore, what characterises constructive predicativity. I have
offered three (non—exclusive) suggestions. One would be to explore the original
debates on predicativity, especially Poincaré and Weyl’s contributions, as they
present us with ideas which have significant affinities with those emerging in more
recent debates. Another option is to focus on the role of different understanding of
quantification, and explore whether a shift to intuitionistic rather than classical logic
could eliminate or alleviate the perceived difficulties with inductive definitions.
Finally, the third option is to explore the role of the paradigmatic example of the
natural numbers, with its principle of induction, for a new constructive route to a
justification of the stratification in stages of an inductively defined set. Here the
principal question is what could grant the constructivist’s belief that the relevant
well-founded trees are constructively and predicatively acceptable.

Acknowledgments I would like to thank the anonymous referees for helpful comments and
the editors of this volume, Stefano Boscolo, Gianluigi Olivieri and Claudio Ternullo for their
determination in bringing the project of this volume to completion. I am grateful to Andrea Cantini
and @ystein Linnebo for comments on an earlier version of this article. The research leading to
this article has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 838445.

References

Aczel, P. 1977. An introduction to inductive definitions. In Handbook of mathematical logic,
volume 90 of Studies in logic and the foundations of mathematics, ed. J. Barwise, 739-782.
Elsevier.

Aczel, P. 1978. The type theoretic interpretation of constructive set theory. In Logic colloquium
’77, ed. A. Maclntyre, L. Pacholski, and J. Paris, 55-66. New York: Amsterdam.



11 Predicativity and Constructive Mathematics 307

Aczel, P. 1986. The type theoretic interpretation of constructive set theory: Inductive definitions.
In Logic, methodology, and philosophy of science VII, ed. R.B. Marcus, G.J. Dorn, and G.J.W.
Dorn, 17-49. New York: Amsterdam.

AGDA. 2020. Agda wiki. Available at http://wiki.portal.chalmers.se/agda/pmwiki.php.

Barbanera, F., and S. Berardi. 1996. Proof-irrelevance out of excluded-middle and choice in the
calculus of constructions. Journal of Functional Programming 6(3): 519-525.

Barwise, J. 1975. Admissible sets and structures. An approach to definability theory. Berlin:
Springer.

Beeson, M. 1985. Foundations of constructive mathematics. Berlin: Springer.

Benacerraf, P, and H. Putnam. 1983. Philosophy of mathematics: Selected readings. Cambridge
University Press.

Bishop, E. 1967. Foundations of constructive analysis. New York: McGraw-Hill.

Bridges, D.S., and F. Richman. 1987. Varieties of constructive mathematics. Cambridge University
Press.

Buchholz, W., S. Feferman, W. Pohlers, and W. Sieg. 1981. [terated inductive definitions and
subsystems of analysis. Berlin: Springer.

Cantini, A. 2022. Truth and the philosophy of mathematics. This volume.

Constable, R.L., and et al. 1986. Implementing mathematics with the nuprl proof development
system. Englewood Cliffs: Prentice—Hall.

Coquand, T. 1989. Metamathematical investigations of a calculus of constructions. Technical
report, INRIA.

Coquand, T., and G. Huet. 1986. The calculus of constructions. Technical Report RR-0530, INRIA.

Coquand, T., G. Sambin, J. Smith, and S. Valentini. 2003. Inductively generated formal topologies.
Annals of Pure and Applied Logic 124(1): 71-106.

Crosilla, L. 2016. Constructivity and Predicativity: Philosophical foundations. Ph. D. thesis,
School of Philosophy, Religion and the History of Science, University of Leeds.

Crosilla, L. 2017. Predicativity and Feferman. In Feferman on foundations: Logic, mathematics,
philosophy, Outstanding contributions to logic, ed. G. Jager and W. Sieg. Springer. Forthcom-
ing.

Crosilla, L. 2019. The entanglement of logic and set theory, constructively. Inguiry 0(0), 1-22.

Crosilla, L. 2020. From predicativity to intuitionistic mathematics, via Dummett. Unpublished
Manuscript.

Dean, W., and S. Walsh 2016. The prehistory of the subsystems of second-order arithmetic. Review
of Symbolic Logic 10: 357-396.

Dummett, M. 1963. The Philosophical Significance of Gédel’s Theorem. Ratio 5: 140-155.

Dybjer, P. 2000. A general formulation of simultaneous inductive-recursive definitions in type
theory. The Journal of Symbolic Logic 65(2): 525-549.

Dybjer, P. 2012. Program testing and the meaning explanations of Martin-Lof type theory. In
Epistemology versus Ontology, Essays on the Philosophy and Foundations of Mathematics in
Honour of Per Martin-Ldf, ed. P. Dybjer, S. Lindstrom, E. Palmgren, and B. Sundholm.

Dybjer, P., and A. Setzer 2003. Induction-recursion and initial algebras. Annals of Pure and
Applied Logic 124(1): 1-47.

Feferman, S. 1964. Systems of predicative analysis. Journal of Symbolic Logic 29: 1-30.

Feferman, S. 1975. A language and axioms for explicit mathematics. In Algebra and logic, volume
450 of Lecture notes in mathematics, J. Crossley, 87-139. Berlin: Springer.

Feferman, S. 1988. Weyl vindicated: Das Kontinuum seventy years later. In Temi e prospettive
della logica e della scienza contemporanee, ed. C. Cellucci and G. Sambin, 59-93.

Feferman, S. 2004. Comments on ‘Predicativity as a philosophical position’ by G. Hellman.
Review Internationale de Philosophie 229(3).

Feferman, S. 2005. Predicativity. In Handbook of the philosophy of mathematics and logic, ed.
S. Shapiro. Oxford: Oxford University Press.

Feferman, S. 2013a. The proof theory of classical and constructive inductive definitions. A forty
year saga, 1968-2008. In Ways of proof theory, ed. R. Schindler, 7-30. De Gruyter.


http://wiki.portal.chalmers.se/agda/pmwiki.php

308 L. Crosilla

Feferman, S. 2013b. Why a little bit goes a long way: Predicative foundations of analysis.
Unpublished notes dating from 1977-1981, with a new introduction. Retrieved from the
address: https://math.stanford.edu/~feferman/papers.html.

Friedman, H. 1973. The consistency of classical set theory relative to a set theory with intuitionistic
logic. Journal of Symbolic Logic 38: 315-319.

Girard, J. 1972. Interprétation fonctionnelle et élimination des coupures de ’arithmétique d’ordre
supérieur. Ph. D. thesis, These d’Etat, Paris VII.

Godel, K. 1944. Russell’s mathematical logic. In The philosophy of Bertrand Russell, ed. P.A.
Schlipp, 123-153. Northwestern University, Evanston and Chicago. Reprinted in Benacerraf
and Putnam (1983). (Page references are to the reprinting).

Gonthier, G. 2008. Formal proof-the four-color theorem. Notices of the American Mathematical
Society 11(55): 1382-1393.

Kreisel, G. 1958. Ordinal logics and the characterization of informal concepts of proof. In
Proceedings of the International Congress of Mathematicians (August 1958), 289-299. Paris:
Gauthier—Villars.

Kreisel, G. 1960. La prédicativité. Bulletin de la Societé Mathématique de France 88: 371-391.

Linnebo, O. 2018. Generality explained. Unpublished manuscript.

Lorenzen, P. 1958. Logical reflection and formalism. The Journal of Symbolic Logic 23(3): 241-
249.

Lorenzen, P., and J. Myhill. 1959. Constructive definition of certain analytic sets of numbers.
Journal of Symbolic Logic 24: 37-49.

Martin-Lof, P. 1975. An intuitionistic theory of types: Predicative part. In Logic Colloquium 1973,
ed. H.E. Rose and J.C. Shepherdson. Amsterdam: North—Holland.

Martin-Lof, P. 1982. Constructive mathematics and computer programming. In Logic, methodol-
0gy, and philosophy of science VI, ed. L.J. Choen. Amsterdam: North—Holland.

Martin-Lof, P. 1984. Intuitionistic type theory. Naples: Bibliopolis.

Martin-Lof, P. 2008. The Hilbert-Brouwer controversy resolved? In One hundred years of
intuitionism (1907 — 2007), ed. E.A. van Atten, 243-256. Publications des Archives Henri
Poincaré .

Moschovakis, Y. 1974. Elementary induction on abstract structures (Studies in logic and the
foundations of mathematics). American Elsevier Pub. Co.

Myhill, J. 1975. Constructive set theory. Journal of Symbolic Logic 40: 347-382.

Nelson, E. 1986. Predicative arithmetic. Princeton: Princeton University Press.

Nordstrom, B., K. Petersson, and J.M. Smith. 1990. Programming in Martin-Lof’s type theory: An
introduction. Clarendon Press.

Palmgren, E. 1992. Type-theoretic interpretation of iterated, strictly positive inductive definitions.
Arch Math Logic 32: 75-99.

Palmgren, E. 1998. On universes in type theory. In Twenty—five years of type theory, ed. G. Sambin
and J. Smith. Oxford: Oxford University Press.

Parsons, C. 1992. The impredicativity of induction. In Proof, logic, and formalization, ed.
M. Detlefsen, 139-161. London: Routledge.

Poincaré, H. 1905. Les mathématiques et la logique. Revue de Métaphysique et Morale 1: 815-835.

Poincaré, H. 1906a. Les mathématiques et la logique. Revue de Métaphysique et de Morale 2:
17-34.

Poincaré, H. 1906b. Les mathématiques et la logique. Revue de Métaphysique et de Morale 14:
294-317.

Poincaré, H. 1909. La logique de I’infini. Revue de Métaphysique et Morale 17: 461-482.

Poincaré, H. 1912. La logique de 'infini. Scientia 12: 1-11.

Rathjen, M. 2005. The constructive Hilbert program and the limits of Martin—Lof type theory.
Synthese 147: 81-120.

Rathjen, M., E. Griffor, and E. Palmgren. 1998. Inaccessibility in constructive set theory and type
theory. Annals of Pure and Applied Logic 94: 181-200.

Russell, B. 1906a. Les paradoxes de la logique. Revue de métaphysique et de morale 14: 627-650.


https://math.stanford.edu/~feferman/papers.html

11 Predicativity and Constructive Mathematics 309

Russell, B. 1906b. On some difficulties in the theory of transfinite numbers and order types.
Proceedings of the London Mathematical Society 4: 29-53.

Russell, B. 1908. Mathematical logic as based on the theory of types. American Journal of
Mathematics 30: 222-262.

Russell, B. 1973. Essays in analysis, ed. D. Lackey. New York: George Braziller.

Sambin, G. 1987. Intuitionistic formal spaces — a first communication. In Mathematical logic and
its applications, ed. D. Skordev, 187-204. Plenum.

Schiitte, K. 1965a. Eine Grenze fiir die Beweisbarkeit der Transfiniten Induktion in der verzweigten
Typenlogik. Archiv fiir mathematische Logik und Grundlagenforschung 7T: 45-60.

Schiitte, K. 1965b. Predicative well-orderings. In Formal systems and recursive functions, ed.
J. Crossley and M. Dummett. North—Holland, Amsterdam.

Simpson, S.G. 1988. Partial realizations of Hilbert’s program. Journal of Symbolic Logic 53(2):
349-363.

Simpson, S.G. 1999. Subsystems of second order arithmetic. Perspectives in Mathematical Logic.
Springer.

The Coq Development Team. 2020. Coq. https://coq.inria.fr.

Troelstra, A.S. 1999. From constructivism to computer science. Theoretical Computer Sci-
ence 211: 233-252.

Univalent Foundations Program, T. 2013. Homotopy type theory: Univalent foundations of
mathematics. Institute of Advanced Studies.

Wang, H. 1959. Ordinal numbers and predicative set theory. Zeitschr. f. math.Logik und
Grundlagen d. Math. 5: 216-239.

Weyl, H. 1918. Das Kontinuum. Kritische Untersuchungen iiber die Grundlagen der Analysis.
Veit, Leipzig.

Whitehead, A.N., and B. Russell. (1910, 1912, 1913). Principia mathematica, 3 Vols., Vol. 1.
Cambridge: Cambridge University Press. Second edition, 1925 (Vol 1), 1927 (Vols 2, 3);
abridged as Principia Mathematica to *56, Cambridge: Cambridge University Press, 1962.


https://coq.inria.fr

Chapter 12 ®
Truth and the Philosophy of Mathematics e

Andrea Cantini

Abstract Is truth — gua a primitive notion — fit to play an independent role in the
philosophy of mathematics and in the foundational investigations? The problem is
handled by surveying axiomatic theories of truth and their implications, with a main
concern for ontological and epistemological issues.
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12.1 Introduction

The paper intends to be a complement to Cantini (2017) — only from the author’s
present perspective, and with a different focus and a wider scope.!

On one side, truth is regarded as a tool for onfological reduction. On the other
side, truth is naturally enjoined when handling the classical epistemological problem
of implicit commitment: what ought we to accept once we have made a commitment
to a mathematical system S?

A warning: we stick to a view of the philosophy of mathematics,> which follows
the pattern of logic, so most successful with analysing the language of mathematics
and its verificational methods, the logical analysis of the structure of mathematics
and the corresponding focus on formal systems as objects of study.
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We do not pretend to offer a wider look of mathematical knowledge as articulated
e.g. in the heuristic view of Cellucci (2017) (recall the opposition logic of math-
ematical discovery vs. logical structure of mathematics). In this respect we send
the reader to the paper Working foundations—"91 in Feferman (1998a) and to p.92.
Accordingly, as to the contents, in Sect. 12.2 we briefly introduce the issue of truth
in the context of mathematical philosophy. Section 12.3 considers philosophical
uses of truth: in particular truth as a means for the foundation of classes and sets.
This step opens up the scenario of a conceptualistic approach, where the distinction
between predicative and impredicative definitions plays a role.

The conceptualistic approach leads to the technical consideration of theories of
the truth predicate. The minimal one is the theory of compositional truth CT. In Sect.
12.4 we describe CT and state some fundamental results: conservation and speed-
up. There is an attempt to assess the philosophical meaning of CT with respect to
ontological reduction. As to this issue, we consider an essentially negative result
concerning the attempt of outlining a definitionist foundation of mathematics, with
reference to the issue of simulating power set in intensional context.

We discuss the issue of reflective expansion of concepts and principles (see
Feferman (1998a), p.120). This route starts with iterating typed truth and hence
expanding CT to hierarchical theories of truth. We then proceed in Sect. 12.5 to
reflective closure; this justifies introducing KF and eventually standard predicativity.
It also opens up the route towards metapredicativity in the sense of the Bern school
(e.g. see Jager et al. 1999).

12.2 Truth in the Philosophy of Mathematics

Since Plato — and in general from a naive realistic naive point of view — truth in
mathematics is understood as pointing to an abstract ideal world, and hence the main
problem — metaphysical as well epistemological — is how to make sense of, and how
to gain access to the abstract universe of mathematical objects. Just to refresh the
context in terms that may be familiar from classical references (see Benaceraff’s
arguments), if our best theory of knowledge is based on causal reliable interaction
between mathematical objects and the mathematicians as knowing subjects, how
is this possible? One way out is to follow a standard route, according to which
mathematical objects live or come into existence within suitable structures, which
are assumed to exist in connection with a certain body of (consistent) knowledge —
typically embodied in a mathematical theory; in turn, these structures are intended
to verify the statements of the given theory and its logical consequences.

The object theory under analysis may not be complete, our knowledge can be
partial with respect to certain statements, that are left undetermined as to their
truth value. But accessibility is granted by the fact that we are able to display our
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notions in a systematic way in a web of notions, by building concepts and proof
constructions which are sound with respect to the given principles.>

Of course, under a close scrutiny, we may like to stress the epistemological
aspects, i.e. proofs and definitions: but this attitude would apparently drive us to
a shift from the truth of a statement to the the grounds of an assertion, and hence
to emphasize the relationship between truth and its justification, e.g. provability,
which is a reason for a substantial recasting of our understanding of logic and
mathematics. Just to simplify our life, we here assume a sort of epoché concerning
all the epistemological aspects and we simply do not discuss truth in the context of,
say, a theory of types in the sense of Martin-Lof, or even in a classical sense, as in
Tait (1983, 1986).

We rather conform to the neutral idea that the concept of truth is central and
indispensable: in order to understand the meaning of a statement, you must grasp
the concept of truth for the given language as primitive.* The concept of truth
and the concept of meaning are inextricably linked (see Dummett 2004): typically,
if we grasp the meanings of two statements and one can be accepted without
the other being true, they must have different meaning. Meaning and truth must
be simultaneously explained. Technically, this idea is susceptible of a precise
formalization, in such a way that the notion of truth and proposition — as content of
a statement — are simultaneously given e.g as in Aczel (1980) or Feferman (2008).

On the other hand, we shall stick to the naive intuition of semantic ascent and
semantic descent: the sentences A and “A is true”— in symbols henceforth 7("A™) —
have the same content and hence are intersubstitutable. Axiomatically, this intuition
is embodied by the well-known disquotational conception of truth, embodied by the
T-schema: for arbitrary sentence A

T(CAT) < A (12.2.1)

In a certain sense the disquotational conception of truth seems simpler and even
the more basic (see Horsten and Leigh 2017). But (12.2.1) is a well-known source

3 The model we have in mind derives from practice, it is simply either the set of informal
elucidations that precede the informal presentation or development of a theory, axiomatic or not.

4 Let me cite Tarski himself, Tarski (1944), p.352: When a language is unable to define truth, we
then have to include the term “true” or some other semantic term, in the list of undefined terms
of the meta-language, and to express fundamental properties of the notion of truth in a series of
axioms. There is nothing essentially wrong in such an axiomatic procedure, and it may prove useful
for various purposes.

In Tarski (1956), p.266, Tarski similarly writes that for some of the languages for which truth
cannot be defined, we can nevertheless make “consistent and correct use” of the concept of truth
by way of taking truth as a primitive notion, and giving it content by introducing the relevant sorts
of axioms.
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of difficulties and this forces us to look at the present debate on the semantical

foundations from a different point of view, that of the philosophy of mathematics.’
However, this is not our main concern. Instead we like to explore the role of truth

predicate in itself, as a primitive notion, and we rephrase the initial problem as:

(*) can the truth predicate play an independent role in the philosophy of mathe-
matics and in the foundational investigations?

All these themes will be dealt with in the light of recent technical developments
and the current attempts to recast in a new light forms of predicativism and
conceptualism.®

12.3 Foundational Uses of Truth Predicates

A straightforward positive answer to (*), which naturally comes to the mind, is
simply that theories of comprehension and satisfaction are closely related: a is an
element of the class {x : ¢(x)} for a formula ¢ (x) roughly amounts to stating that
the formula ¢(x) is satisfied by a or that the formula ¢ (x) is true of a or, finally,
that the predicate defined by P truly applies to a.

Using this observation, one can reduce class theories to theories of satisfaction or
truth; furthermore it seems that we have an ontological gain: one can replace quan-
tification over classes by quantification over formulas or propositional functions
(whatever they are). The basic ideas are to be credited at least to Russell’s no-classes
theory; the source is Russell (1906), pp.45—47, but see (Principia Mathematica,
section 20%), and also Introduction to Mathematical Philosophy, chap. 13 (Russell
1919).7

But the solution is problematic. First of all, due to the antinomies, the concept
of truth ought to be considered with suspicion as well, and the reduction of
mathematical theories to theories of satisfaction or truth does not look too attractive.
Nevertheless — thinking of Russell’s emphasis on the method of logical construction
(the honest toil mentioned in Russell (1919), page 71) — it might be more attractive
a choice. But is this a sufficient reason? As stated elsewhere (Cantini, 2017),
288, we apparently “want to replace a respectable mathematical theory with a
‘philosophical’ theory of truth or satisfaction, because of a possible reduction of the
ontological commitment to sets to a lighter(?) ideological commitment to notions
such as truth.” Instead of relying on Russellian philosophy, let us briefly explore an

5 The link between semantical investigations and foundations of mathematics is certainly not new,
see the work following Kripke (1975) by Feferman and others (as documented in the references of
Feferman (2008)) and all the recent investigations of axiomatic theories of truth (Cantini, 2017).

6 We have in mind constructive set theory as developed by Aczel and Rathjen (2001), explicit
mathematics a la (Feferman, 1998c), metapredicativity in the sense of the Bern school (see Jager
2005).

7 But consider the approach in Parsons (1971, 1974), Cantini (1996), and recently Schindler (2018).
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alternative answer to (*) and a different reason for choosing truth. This is simply
that we like to stand by Weyl: instead of making sense of sets as a domain of entities
closed under certain operations and postulates, we might be willing to make sense
of sets by means of definition as specifications® and to stick to a view inspired by a
conceptualistic approach.

Let me for a moment dwell on it. The fact is that this is problematic, too. As
stated by Parsons (2002), 378,

Hilbert views both Russell and Weyl as seeking to reduce the concept of set to predication.

But then Hilbert’s criticism is that

...we must ask what there is a predicate P should mean. In axiomatic set theory the
quantifier there is always relates to the underlying domain B. In logic we can, to be sure,
think of predicates as collected to a domain, but this domain of predicates cannot in this
case be considered as something given at the outset, the predicates must be constructed
by logical operations and the domain of predicates is determind only afterward by the
rules of logical construction. From this it is clear that in the rules of logical construction
of predicates references to the domain of predicates cannot be allowed. For otherwise a
circulus vitiosus would arise.’

While sets are assumed to form a domain of completed totalities, underlying basic
closure conditions and operations, and hence no vicious circularity should be
involved in quantifying over sets, on the contrary predicates come into being via
logical operations and form an open totality. There might be room for impredicative
definitions at the level of the given Operationsbereich (individuals and operations
there upon are given).

Predicates are generated via logical operations and hence, according to Hilbert,
the domain of predicates depends upon the rules of logical construction: by means
of these rules, we can refer to predicates only at the price of a vicious circle (see
Hilbert, p.31, Probleme der mathematischen Logik, SS 1920), or unless we have
established some sort of logical order or hierarchy.

After all, how seriously can we choose truth as a notion for grounding sets? A nat-
ural (minimal) answer — in the spirit of Weyl (1910) — is that there are finitely many
construction principles for sets corresponding to the elementary logical operations
— Boolean operations, projections and combinatorial operations'’— and handled by
the very truth predicate. In an extensional vein, there is a correspondence between
natural predicative non-vicious set existence principles and the logical conditions
grounding the biconditionals of the form (12.2.1) for elementary formulas. Do the
logical principles deserve philosophical priority over set principles? This is only a
start, but it opens up a direct confrontation with most recent research.

The systems we are going to briefly touch upon below are listed in increasing
proof-theoretic strength: they range from systems of arithmetical strength to systems

8 See Weyl (1910).

9 We quote Hilbert’s text as translated in Parsons (2002), p.378; see also p.74, Mancosu (1998),
and see Hilbert (2013).

10E . permutations, duplications, identification, expansion of variables.
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higher up. There are not only rich models for non-trivial notions of truth, but also
well-understood systems — classical as well as constructive — that can be fruitfully
compared as to their significance in the foundational investigations. For the sake
of space, we only explicitly consider: the compositional typed theory of truth CT;
the type-free theories KF and VF.!! Incidentally the classification results show that
it is not true that the theories of truth lack ‘deductive power’, and that theories
of truth — be they axiomatized by typed or untyped T-sentences — compare well
with mathematical theories with comprehension axioms. The real issue is on the
conceptual priority and this will be left open to discussion in the present paper.

A philosophical general point concerns ontological reduction: as written in
(Halbach 2011, 331) even the commitment to sets that are not predicatively
definable can be replaced with strong semantic commitments. But it is to be seen
whether strong ontological assumptions can be reduced to semantic assumptions.
In significant cases, the ontology of truth theories is typically given by a countable
set of individual objects — usually taken as the natural numbers. On the other hand,
proof theoretic strength is often the consequence of set existence. But it is also true
that the commitment to sets that are not predicatively definable can be obtained via
semantic principles (see VF).

Of course the value of such a reduction is debatable and lies at the core of the
philosophical problem: is it preferable to rely upon the existence of an ideal structure
— a universe of sets and operations — or a truth predicate?

Remark 1 More on Parsons’s views (see Parsons (1971, 1974)). The issue of
the relationship between predicative class theories and theories with satisfaction
predicate is investigated by Parsons (1974), showing the mutual interpretability of
predicative class theory and a weak theory of satisfaction (with the satisfaction
predicate not allowed in the axiom schemata such as replacement and induction).
Parsons argues that a satisfaction theory seems inherently predicative since it refers
explicitly only to the formulae of the given language; hence he discusses the
difficulties of identifying sets with extensions of predicates; he favours the view
that set existence principles are not reducible to what the extension of predicates
would simply suggest.

The predicativist view of classes has also been closely investigated in the recent
essay: Predicativism about Classes by Fujimoto (2019).

12.4 Compositional Truth

First of all, we deal with the compositional theory CT. This system is deceivingly
simple, but utterly non-trivial both on the semantical side as well from the point of
view of proof theory. We follow essentially the standard notations and the exposition

11 For all these theories, we refer to the monograph (Halbach, 2011).
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in Halbach (2011). We start with the language of Peano Arithmetic PA, Lpa with a
unary predicate T for truth 7.

(1). Quantifiers Vs and V¢ range over the codes of Lpa-terms; V¢ is short for
Vx (ClTerm(x) — ...), where ClTerm(x) means that x is a closed Lpa-term;
° represents in PA a recursive function taking a code of a closed Lpa-term and
returning its numerical value;
(i1). Sentpa(x) := x is a code of a sentence of the language of PA. — represents in
PA negation; e.g., ="0=0"="0#0"
(iii). A represents conjunction in PA.
(iv). Y represents a function that takes a code of a variable, a code of a formula and
returns the universal quantification of the formula with respect to the variable.
(v). x[y/z] := the code of the result of substituting a term encoded by y for a
variable encoded by z in a formula encoded by x.
(vi). Provg(x) represents formal provability in a theory S; so Provpa (x) represents
formal provability in PA.

Finally, GRFg, the global reflection axiom over the theory S, is the sentence
Vx(Provg(x) — T (x)); (12.4.1)
the uniform reflection schema for S URFg has the form
Vx(Provg("A(x)™") — A(x)), (12.4.2)

where A(x) is an arbitrary formula of S.

12.4.1 CT-Axioms

Peano arithmetic PA is our base theory and for PA the compositional axioms can be
chosen as follows:

(i) VsVt (T(s;t) < 5° = t°)) and similarly for other predicates other than =,
except for the special predicate T
(ii) Vx (Sentpa(x) — (T (mx) <> =T (x)))
(iii) VxVy (Sentpa(xAy) = (T(xAy) < T(x) AT(y)))
(iv) Vv Vx (Sentpa(Yvx) — (T (Yox) < Vi T (x[t/v])))

12.4.2  Variants

(i) CT is PA with the axioms for compositional truth and induction schema for the
full language which also include T';
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(i1) Indpa(a) is the formula expressing that a is the code of the universal closure
of a PA-instance of induction; the internal arithmetical induction I-ind is:

Va(Indpa(a) — T(a))
Modulo the compositional axioms, it is equivalent to:
For,lgA(a) AT (@) AVu(T (a(m)) = T(a(u + 1)) — VYxT (a(x))

where For,lgA(x) expresses the fact that x is the code of an Lpa-formula with
exactly one free variable;

(iii) CT™ is CT with the schema of induction for arithmetical formulas;

(iv) CT] is CT with the full induction schema replaced by I-Ind;

(v) CTy is the extension of CT~ with induction for bounded > formulas, possibly
with the truth predicate (so CTg includes CTV);

(vi) CT; is the extension of CT( with induction for ITj-formulas with the truth
predicate.

12.4.3 Basic Results

Crucially, if the induction schema is expanded to the new language with truth, the
resulting theory CT (for ‘compositional truth’) naturally proves the soundness of
Peano arithmetic, that is, the global reflection principle for PA as one axiom:

Vx (Sentpa(x) A Provpa(x) — T(x)).

By contrast, if induction is restricted, conservation over PA holds:
Theorem 1

(1) CT/ is conservative over PA.
(ii) CTy is not conservative over PA.

The relevant non-trivial technical developments can be found in older papers by
Kotlarski et al. (1981), Lachlan (1981), and in more recent work by Halbach (2011,
p-104), Enayat and Visser (2015), Leigh (2015, p.862), Letyk and Wcisto (2017b,
p-460), Letyk and Wcisto (2017a), and CieSliniski et al. (2017).

Let me add a couple of comments on the proofs of the conservation (i). In general,
an arbitrary model of PA contains non-standard numbers which encode syntactical
notions — terms, formulas, derivations — and it is not at all clear that there exists a

12 Formulas generated from atomic formulas via Boolean operations and bounded quantifiers Vx <
t...and 3x < ... with < representing the standard ordering on natural numbers.
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truth predicate or a satisfaction predicate that is correct with respect to these possibly
non-standard objects, i.e. terms or formulas encoded by infinite numbers.

The obvious conservation proof via expansion and completeness does not work.
Instead, one has to resort to non-trivial model-theoretic constructions as given by
Kotlarski et al. (1981), which involve the so-called recursively saturated models
(see Kaye 2005). Indeed, if a model of PA has a notion of truth satisfying the natural
axioms for T, then the model is recursively saturated, and conversely (see Kotlarski
et al. 1981, p.293). As an alternative proof, one may refer to the method of Enayat
and Visser, which is based on compactness, elementary chains; and nonetheless it
can be formalized in weak arithmetic.

A natural question concerns whether direct effective methods exist that allow to
verify conservation. Indeed, finitary methods have been devised only recently by
Leigh. Leigh’s proof in Leigh (2015) is subtle and inspired by the idea of finite
approximations of non-standard syntactical objects.

On the philosophical side, the proof has applications, to the effect that the
adoption of a classical truth predicate may have an epistemological value, at least in
principle, with respect to the resources involved in formal derivations.

As already made clear by Godel’s seminal paper (Godel 1986), adopting abstract
notions and principles thereof — like truth or set — can provide not only new
theorems (e.g. on the consistency), but also sensible reduction in length for an
infinite number of already available proofs. This idea can be made precise via the
notion of superexponential speed-up (also known as non-elementary speed-up), that
we here recall following Fischer (2014, definition 2.3) and Caldon and Ignjatovic
(2005, pp.780-781).

Let S be a theory in the language of PA such that the set of theorems of PA is a
subset of the theorems of S. Then S has non-elementary speed-up over PA iff there
is a sequence {g;|i € w} of formulas provable in PA, such that:

(@i). for no function f with Kalmar elementary growth rate, we have, for all i € w,
leillpa < f(ll@ills);

Here, given a theory T in the language of PA, ||¢||T is the minimal n, such that ¢ has
a formal derivation d in a theory T with at most of length #; ‘length’ means ‘symbol-
length’, i.e. the number counting all the symbols occurring in d (see Fischer 2014,
p.321).

In the crucial case of consistency statements, one has in general that, if Cons(PA)
is the standard formalization of the consistency of PA, PA + Cons(PA) has super-
recursive speed-up over PA by the main theorem of Ehrenfeucht and Mycielski
(2020, p.367).

It is known by Fischer (2014), corollary 6.2, that CT has a non-elementary speed-
up with respect to PA. On the other hand, again by Leigh (2015), corollary 6.3, the
theory CT| which includes Vx (Indpa(x) — T (x)) has a speed-up over PA between
exponential and superexponential.

This result should be compared with the case of the corresponding disquotational
theory extending PA based on the uniform T-biconditional schema UTBy, i.e. the
schema T("A(.x)j) < A(x) (A(x) being an arbitrary formula of Lpa). It turns out
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that the system based on UTBg has no significant speed-up over PA'3 and hence it
is much more attuned with a deflationist account of the notion of truth.

Lastly, as kindly suggested by one of the referees, the results of Fischer and Leigh
have been improved in Enayat et al. (2020): CT ™, as well as KF~ (see below), have
no more than polynomial speed-up over PA. The result is implied by the fact that
CT™ and KF~ are feasibly reducible to PA, in the sense that there is a polynomial
time computable function f such that, for every proof 7 of an arithmetical sentence
A in CT (KF™), then f () is a proof in PA of the same formula A.

Remark 2 The quantitative results on speed-up suggest the adoption of forms of
mathematical instrumentalism, according to which certain mathematical notions
and theories can be regarded as technical means for facilitating proofs of statements
in given accepted theoretical frameworks, e.g. PA: the idea is that expansions of
the ground basic system PA are, so to speak, instruments for making proofs shorter
and hence easier to grasp (Caldon and Ignjatovic 2005). This raises the problem: is
instrumentalism on the same par as deflationism for a semantical theory?

12.4.4 Assessing the Value of CT: Ontological Reduction?

Let us now go back to the initial question (*) and try it again in the special form:
What is the value of CT for the philosophy of mathematics, if any? We explicitly
discuss two possible directions.

Firstly, as already hinted, we can qualify the choice of CT in terms of ontological
reduction.

In fact, it is well-known how to prove that the theory ACA of second order
arithmetic as based on arithmetical comprehension and full induction on numbers
is relatively interpretable into CT: the range for first-order variables being fixed,
second oder variables — intended to range over subsets of natural numbers — are
interpreted as ranging over monadic formulas in the pure arithmetical language,
while membership x € X is translated into T (a(x)), where a encodes any monadic
formula A(v) and a(x) essentially corresponds to the arithmetical expression
defining the code of the formula obtained by replacing v via in A by means of the
code of the xth-numeral. Instead of definable sets — indeed predicatively definable
ones at the simplest level, once quantification on natural numbers is accepted —
we can fully resort to accepting an elementary theory of (arithmetical) truth. This
implies that, instead of an ontology with sets, one takes a position where essentially
only natural numbers are assumed to exist. More generally, this makes sense if one

13 See Theorem 3.2 in Fischer (2014).
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assumes that every mathematical object is represented by a definition, following a
definitionist inspiration going back to Poincaré and Weyl.'*

Under this reading, even a nominalistic understanding of power set becomes
conceivable, and one can explore the possibility of avoiding impredicativity under a
nominalistic intensional rendering of power set using truth and following a strictly
intensional route. Assume that X is a class means X is a one-variable formula,
that membership a in X corresponds to ’a makes X true, while X is a subset of Z
means every a making X true makes Z true. too. Is then consistent to assume the
existence of a class Pow™(X) such that it consists of exactly those objects that
encode subclasses of X under the given understanding of what a class is? Formally,
assume that # = X is a well-formed formula saying that « is a class Y. Then the
corresponding set existence takes the form

Yu(u € Pow ™ (X) < IYY =uAY C X)).

Here extensional quantification over subsets is replaced by means of quantification
over certain individuals representing subsets as defined by monadic formulas which
make sense via the truth predicate. By Jager (1997) and Cantini (1996) the answer
is negative: the existence of Pow™ (X) is refuted, as soon as set existence admits
elementary logical operations.!> Hence the existence of the strong power set is
inconsistent with elementary comprehension and hence there is no hope to model it
in CTJ. Thus predication and an intensional outlook are not viable (compare with
Hilbert’s quotation of the Sect. 12.3).
Alternatively, one can consider the weak power set operation Pow:

Vu(u € Pow(X) — Y (Y =uAY C X)) A (12.4.3)
VY(Y € X — 3yIZ(y € Pow(X)Ay=ZAZ=,7Y)), (1244

where Z =, Y means that Z and Y are extensionally equal (have the same
elements). This is consistent even with the assumption that the class of all classes
exists, but it is inconsistent with the so called join axiom (existence of disjoint sum),
by simple diagonalization argument.

Incidentally, the existence of the so-called weak power classes is very weak
proof-theoretically; it is known that adding weak power set axiom to elementary
comprehension is conservative over PA (Glass 1996).

As stated in Jager (1997), neither the strong nor the weak power set axiom seem
to provide a convincing approach to sets or power types in foundational frameworks
that take inspiration from definitionism (like explicit mathematics). Therefore there
remains the question whether there is an alternative, possibly intermediate form,

14Tts most recent version being the so-called explicit mathematics which was introduced in the
Mid Seventies by Feferman (1979) and is still being developed by the Bern school and others. See
also Feferman (1998b) and the comments in Parsons (1971) and Cantini (2016).

15 These are neatly analyzed probably for the first time by Weyl (1910).
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which is more interesting. Hilbert’s criticism of both Russell and Weyl as seeking to
reduce the concept of set to predication (see Sect. 12.3) is in a sense not neutralized
by passing to a strict definitionist and intensional look.

12.4.5 CT and Beyond

We can justify the choice of CT if we naturally reconsider a classical theme that
has been forcefully argued for — most notably by Kreisel (1970) and Feferman in
the Sixties and early Seventies — namely that the acceptance of a theory S enjoins
the implicit acceptance of the soundness of S. This means that the acceptance of S
enjoins the acceptance of (all instances of) a reflection principle. If we try to answer

What is implicit in accepting a mathematical system S? And what ought we to accept once
we have made a commitment to S?

a canonical reply apparently is that we must accept a system S as true, which means
to justify or accept the statement of the reflection principle all (closed) theorems
of S are true. But this sentence cannot be formulated in S itself by means of a
single statement; for this desideratum requires a truth definition T for the language
of S and such a truth definition doesn’t exist because of Tarski’s theorem on the
undefinability of truth.

Now this is the right place to come up with CT; the theory, as based on a primitive
predicate for truth. Indeed, once CT is accepted and we systematically follow this
path, we remain entangled with hierarchical theories of truth: for then we are
committed to the soundness of CT, and thus to a truth predicate T for CT-soundness.
To this end, one can add a truth predicate 7 that applies to all sentences with 7.
Ty is then axiomatized in the same way as T except that 7 is treated as a non-
special predicate symbol. Moreover quantification over sentences of the arithmetical
language is replaced with quantification over sentences of the expanded arithmetical
language. This procedure can be iterated and an axiomatization of Tarski’s hierarchy
of languages is obtained.

The crucial point is that we have to cope with a never ending implicit commit-
ment, because the implicit commitment in the acceptance of PA is not exhausted by
CT and the reflection principles: the iteration procedure further continues, and all
this can be formally made precise by means of standard technicalities of recursion
theory (Halbach 2011). Eventually, the resulting formal framework is a standard
way of representing predicativity over natural numbers! And predicativity ought to
be considered as the conception that makes precise the answer to the question: what
is implicit in assuming the structure N of natural numbers and the general principle
of induction over N.

There are — however — objections that can be raised to the whole idea.

First of all, on the conceptual level, it is to be seen whether these iterated theories
of truth whose purpose is to make explicit assumptions implicit in the acceptance of
PA, are truly implicit in the acceptance of PA any way, given the complex ordinal
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structures that are necessary to make the informal ideas precise. It is hard to accept
that all the heavy machinery might be naturally ascribed to the simple acceptance
of PA. Since PA proves the transfinite induction schema for any initial segment of
the standard wellordering of type &g, the truth predicates can then be iterated up to
that point. The new theory with transfinitely many truth predicates, however, proves
transfinite induction for longer wellorderings. Hence the truth theories are iterated
even further, following a well-known bootstrapping procedure, until a point 'y, i.e.
the so-called Feferman—Schiitte ordinal, is reached. Now the iterated truth theories
very much resemble the systems of predicative analysis, which had been studied
thoroughly in the 1960s, and I'g is such that the transfinite induction principle along
any « < I'g is regarded as predicatively acceptable ordinals.

Incidentally, we recall that there is a jump of logical order in the concepts
involved. Technically, the problem is that the orderings involved have to be well-
founded; but this very notions leads to second order concepts and to the delicate
issue: how far can the process of reflection be iterated in a way that the proviso of
strict predicativity are met.

Lastly, there might be some worries about the genuine epistemological value
that can be ascribed to the soundness theorem — formalized via reflection. We have
chosen the intended semantics so that axioms of PA become true, as we believe in
their truth. In view of incompleteness, the important fact is that soundness —trivial
as it is — is unprovable as it implies consistency. And indeed Girard (1987), p. 64
observes that there is no addition to the fact that we accept principles and rules, but
maybe all this has an interest because of formal uses.

To sum up, the results on iterated truth theories are formally not extremely
exciting and still have some problematic aspects that have been recently considered
in the philosophical literature.

Nevertheless, the whole matter can also be reconsidered from a Godelian point
of view. By incompleteness we are doomed to search for new axioms and there is
the need for introducing new axioms in order to settle undecided propositions. How
to proceed? A natural procedure is just by reflection and the desideratum would be
to concentrate on the consideration of axioms which are supposed to be ‘exactly as
evident’ as those already accepted.'®

It remains to be seen how to implement these ideas of reflective expansion and
this will be done in the next Sect. 12.5.

12.5 Untyped Truth

From a foundational point of view, the iterated classical truth theories are signif-
icant: a way of carrying out the programme of determining the reflective closure
of PA, that is, of characterizing the theory that makes explicit what is implicit

16 Note that this excludes the principles about very large cardinals, determinacy, etc.
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in the acceptance of PA. But the formulation of the systems of iterated truth is
technically awkward and highly specific to PA. Hence the question whether it is
possible to characterize the reflective closure of theories in a more elegant and
applicable way, and in a way that it is independent on ‘natural’ ordinal notation
systems and arithmetization.

It is possible, but it does require a conceptual turn. Let us go back to fun-
damentals: assume a generalized constructive view of mathematical knowledge
where truth is associated with a semantical evaluation schema, to be read as a
set of possibly infinitary inferences. Then it turns out that truth must be partial,
approximate, inductively generated, and it may be simply undecided under a given
schema whether a given statement has a determinate truth value. Predicates are
better seen as potentially given through the evaluation process and they can be open-
ended, and naturally seen as partial operations. This in opposition to sets, whose
membership is fotal. Of course, there are predicates P that are completed, i.e. there
is a stage such that, given any individual element a of the ground universe, either it
is verified that a falls under P, i.e. P(a) is verified or it is verified that it does not,
i.e. the statement P(a) is falsified. Partiality is intrinsic to the ontological choice;
for it may happen that neither P(a) is verified nor P (a) is falsified.

According to this view, true statements and false ones are simultaneously
generated from the basic non-semantical facts - true and false atomic sentences.
All this gives rise to a sort of indefinite monotone investigative process —just to use
Feferman’s words—, which works in stages — classically ordinals — and the ordinals
emerge from the theory itself and they are not imposed on it from the outside.
Furthermore, truth is self-applicable, no need of an explicit hierarchical structure.

From the point of view of foundations, the technical achievements can be
ascribed to the application of generalized recursion theory, and definability theory
in a general setting which fully recovers tools from that part of the set theoretic
tradition, which is linked with the attempt of some sort of constructive understand-
ing: the semintuitionistic tradition having its source in Poincaré, Baire, Borel and
Lebesgue (see Cantini (1985b) and most recent work due to Rathjen (2016)).

12.5.1 Kripke-Feferman

If we try to make these ideas formally precise, we are naturally led to formalize
the clauses of Kleene strong three valued semantical schema and hence to the well-
known KF-theory (over PA). For the reader’s sake, let us summarize a few points
about KF.

The axioms of KF comprise PA, full induction schema, and

(i). VsVt ((T(s;t) <« s° =t°)) A (F(s;t) < s° 7ét°)), and similarly for other
predicates other than =, except for the special predicates T and F;
(ii). Vs ((T(Ts) < T(s°)) A (F(Ts) < F(s°)));
(ifi). Vs ((T(Fs) < F(s°)) A (F(Fs) < T(s°)));
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>iv). Vx (SentKF(x) — (T(7x) < F(x) AN (F(7x) < T(x)));

(v). YaVy (Sentkp(xAy) — (T(xAy) < Tx) ATG)) A (F(xAy) < Fx) Vv
F(y));

(vi). YvVx (SentKF(\?’vx) — (TVvx) < ViT(x[t/v]) A (F(NYvx) <
ar F(x[t/v]))).

Remark 3 KF is intimately related to a logical development of non-extensional con-
cepts (classification, operation) and semantical investigations; see Cantini (1996)
for the connections with Aczel’s Frege structures, explicit mathematics. Further-
more, KF has an interesting model theorz_(\rich lattice theoretical results); it is also
related to the standard fixed point theory 1D (see Feferman 1982); in turn, this leads
towards the foundations of intuitionistic type theory (see Hancock’s conjecture,
Feferman 1982, Cantini 1985a).

Halbach (2011) develops a fuller picture. KF can be seen as a generalization of CT,
which is a subtheory of KF, or, more naturally, as a generalization of a theory of a
positive inductive definition of truth and falsity (see Halbach 2011, § 8.7).

12.5.1.1 Technical Results

For the reader’s sake, let me add a reminder on significant fragments and their proof
theory.

(i). KF~ is KF with induction for T-free formulas;
(ii). KF. is KF with induction restricted to total predicates, i.e. such that
VxT(a(x) v T(=a(x)));
(iii). KF, is KF with induction restricted to internal predicates;
(iv). CONS is the statement that no sentence in the language LkF is true and false.

KF and its variants can be compared with standard subsystems of second order
arithmetic as presented e.g. in Simpson’s monograph (Simpson, 1999). If S, Sy are
two elementary theories, let S1 = So stands for “Sy, Sy have the same arithmetical
consequences.” Then, if (I'I(l) — CA), is (an axiomatic rendering of) ramified
analysis up to any level < A, it is known:

Theorem 2

(i) PA =KF~ + CONS = KF,;
(i) KF~ has nonelementary speed-up over PA (see corollary 5.13 of Fischer
(2014));
(i) (1Y — CA)~oo = KF), + CONS;
(iv) (IT% — CA)~,, = KF + CONS.

Let us extend KF by a suitable substitution rule of the form

o (P)
eEY(x))
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where ¢ is a formula of Lpa with an additional predicate symbol P, i is arbitrary.
Then the resulting system yields the schematic reflective closure Ref”,‘-f,A( Py another
way to characterize predicativity in the sense of Feferman and Schiitte:

Theorem 3

Refpppy = (M) — CA) .

Informally, the rule allows us to make inferences from schemata accepted in
the original arithmetical language to schemata of the language with self-referential
truth.

12.5.2 Beyond Kripke-Feferman

There is a fairly unsatisfactory feature of KF, which naturally leads to the consider-
ation of consider of a non-classical version of KF. Roughly, internal truth and outer
truth diverge in KF; this means that KF can prove a sentence A, and yet KF is unable
to prove T ("A7).!7 In other words, KF does not have full disquotation rules T-intro
and T-rules.

This fact has motivated the introduction of a non-classical subsystem PKF, based
on a generalization of partial logic, the so-called BDM-logic (Basic De Morgan
logic), which is studied by Halbach and Horsten (2006), Halbach (2011), Horsten
(2011), Fischer et al. (2017)). PKF is closed under the rules

¢ T-introduction A/T("A™) ;
¢ T-elimination T("A™)/A;

hence A and T (" A™) are interderivable.

It has been proved that PKF is proof-theoretically weaker than KF and indeed
comparable with KF,, wih respect to its ordinal theoretic content.

To sum up, a dilemma arises. The first horn is that you consistently rely on
a notion of full disquotational truth, whose naturalness is a good ground for
justificatory work. But then the inferential patterns of material implication are not
accessible because of the T-rules, which makes mathematical argumentation more
cumbersome and restricts its power, whereas mathematically reasoning in classical
logic is natural. On the second horn, you can recover standard logic, and state the
scientific laws of truth as in KF. But these laws are not assertible in the system,
which has to give up a justificatory work for the foundations (for a deepening of this
point, see Fischer et al. 2019).

17 Typically this happens for the Liar sentence L.
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12.5.2.1 Autonomous Iterations and Metapredicativity

Type-free truth can be naturally iterated following the simple idea that, when we
accept a system S, we are entitled to accept S as true. In other words, we are led to
single out the operation

S+ §* (12.5.1)

where S* is § with the axioms on a new predicate T expressing the truth predicate
for the language of S and satisfying KF-axioms.

The procedure is then iterated transfinitely many steps along autonomously
obtained primitive recursive well-orderings prwo <: roughly you accept < of type
a only if in a system defined at a lower stage you obtain transfinite induction TI
along <. This gives rise to the limit system Aut (KF).

Beyond standard predicativity, one gets ordinals higher up, greater that I'g, using
the so-called Veblen’s ternary function hierarchy Aafy.pafy and the function
la.I'y enumerating the I'-numbers (see Strahm 2000). Fujimoto’s theorems in
Fujimoto (2011) provide a proof-theoretic analysis of transfinite iterations and
autonomous progressions of various arithmetical truth theories, including Aut (KF),
positive uniform T-biconditionals, Kripke-Feferman truth based on a weak Kleene
scheme, determinate truth and Feferman logic. A precise characterization in terms
of ordinal invariants and all these theories yields the ordinal ¢200. It is to be
noticed that the theory VF (see Cantini 1990) of self-applicable truth based upon
the supervaluation schema climbs much higher up, and the ordinal required for
Aut (VF) requires the more powerful ordinal function ® and is known as ©Qg, 0.

The general philosophical meaning of these investigation on self-referential truth
predicates is that along this path, one comes to explore systems that go beyond the
boundaries of classical predicativity. This opens up the route to a fresh analysis
of predicativity, also in connection with apparently separate lines of thought, e.g.
constructive type theory (for a recent contribution, see Crosilla 2017).

Conceptually, the issue is: how stable is the upper limit of predicativity?
At present, there are several converging results providing formal and informal
arguments for overcoming the bounds of Feferman-Schiitte.

Remark 4 KF and VF have different strength proof-theoretically above PA. This
contrasts with a result by Fujimoto (2018) that if one respectively extends NBG with
truth axioms a la KF and a la VF, one obtains two theories of the same strength!

12.5.2.2 Completing the Picture

Along the pattern of KF, one can pursue other interesting routes.

(i) Many philosophers think that the minimal fixed point model of Kripke’s theory
is the most natural: a picture of grounded truth. But KF is the theory of all
fixed point models. Hence one can try to add axioms excluding non-minimal
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fixed point models and this leads to theories of truth with some minimality
assumption (see Burgess 2014, Cantini 1989).

(i) The theory KF naturally generalizes to the so-called applicative systems,
where the ground universe is a combinatory algebra, i.e. a theory of untyped
operations, (see Aczel’s original contribution (Aczel, 1980) about Frege
structures and the previous work by Feferman on explicit mathematics). In
recent times (Cantini and Crosilla 2010) semantical theories have been used
as an environment to develop an interpretation of constructive set theory CZF,
which simplifies Aczel’s type-theoretic interpretation and fragments thereof.
Thus the roots of the notion of sets lie in the underlying theory of truth and
predication, together with a basic structure, where rules (in a generalized com-
putational sense) live. One smoothly moves from truth to sets, constructively.
Again, semantical theories give rise to natural predication theories and hence
to the logical notion of set a la Frege-Russell.

(iii) One can compare alternative evaluation schemata, as mentioned already (e.g.
van Fraassen and the system VF, Feferman’s determinate truth Cantini 2017)
and try to assess their different use for the philosophy of mathematics.

(iv) A more challenging task can be imagined:

(*) design semantical theories that go beyond a nominalistic predicativistic
definitionist view, moving from predicative systems to impredicative sys-
tems.

To this aim we have introduced elsewhere (Cantini, 2020) an abstract, very
strong theory of truth built up according to Quinean ideas and typical ambigu-
ity; the theory is consistent, if Quine’s New Foundations is; as to the strength,
it goes far beyond the systems investigated e.g. in Schindler (2018).
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Chapter 13 )
On Lakatos’s Decomposition Qs
of the Notion of Proof

Enrico Moriconi

Abstract Lakatos’s masterpiece, Proofs and Refutations, can be seen as a renewal
of the classical debate between analytical and axiomatic (or synthetic) procedures.
In fact, it is framed within a broad context where the refusal of the latter kind of
procedures is linked to a strong criticism of the formalistic school of mathematical
philosophy.

In this paper I will try to appropriately settle the relationship between Popper’s
falsificationism and Lakatos’s fallibilism, and I will give a special emphasis to
the final part of Proofs and Refutations, where the last notion to be submitted to
stretching becomes that same notion, when Lakatos starts “to stretch the stretching”,
and the skeptic component of his attitude becomes the source of some of his most
brilliant insights.

Keywords Formal/informal proofs - Falsificationism - Fallibilism

13.1 Introduction

Lakatos’s masterpiece, Proofs and Refutations,' constitutes a wonderful exploration
of how mathematics evolves. The central theme of Lakatos’s dissertation” is a
criticism of the concept of formal proof, which is an argument executed according

'See Lakatos (1976). From now on, we will use P& R as a shorthand for the volume Proofs and
Refutations.

2 As is well known, P&R is written as a classroom dialogue between a teacher (Lakatos?) and
students, simply recorded with a Greek letter. Students, usually, raise new questions and problems
providing also the (often) temporary answers and solutions, whereas the teacher just takes stock of
the debate highlighting points which are worthy of further discussion.
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to the rules of a precisely specified mechanism. His aim is to give some real sense
to the claim that regimenting proofs in order to clarify their assumptions and the
procedural rules involved —the process which formalization brings to the fore— is
just one phase in the complex process that leads to the growth of mathematical
knowledge.

After having detailed the few (quasi-)technical terms one has to get acquainted
with in order to understand Lakatos’s fallibilist proposal, I will focus on the
modifications that, according to a largely shared opinion, Lakatos produced on
Popper’s critical falsificationism with regard to two core aspects:

1. Lakatos extends falsificationism also to mathematics (to which Popper himself
did not venture to apply his ideas), proposing to consider also the latter as
quasi-empirical: mathematical theorems are not irrefutably true statements, but
conjectures: one cannot know that a theorem will not be refuted.

2. According to Lakatos, refutation does not entail immediate rejection, as it was
the case in Popper’s Darwinistic account. Lakatos deploys instead a battery of
strategic moves in order to cope with cropping out counterexamples.

The previous characterizations of Lakatos’s views contain significant portions of
truth, of course, but I don’t believe that they offer a very balanced account of
things, and I think that Popper’s logical and epistemological papers of the late 1940s
can help us in better setting the relationship between Popper’s falsificationism and
Lakatos’s fallibilism. I will ground my ideas in positions held by Popper in various
papers of the years from 1946 to 1948, most notably in “Why are the Calculuses
of Logic and Arithmetic Applicable to Reality?” (1946), and in “Logic without
Assumptions” (1947), written when Popper was teaching the 2-year introductory
courses on logic and scientific method which were his core academic duty at
the London School of Economics for over two decades (1946—-1969). For, I think
that attending Popper’s courses and seminars, together with acquaintance with his
logical papers, was a true “training ground” for most of his students, most probably
Imre Lakatos included.

In fact it is difficult not to see a close connection between Popper’s playing with
the logical notions and Lakatos’s perspective, in which the starting point is got by
adapting a somehow devised “proof-sketch” to new problems waiting for a solution.
A main point, in this framework, is given by the way in which the evolution of
the initial proof of Euler’s Conjecture is depicted as something which results from
interactions with various kinds of counterexamples which immediately start to crop
up, leading to arguments over the meaning of terms involved in the definitions as
they are put forward, so that various characterizations of the notions of polyhedron,
polygon, edge, area, vertex, ..., are provided. For instance, when student Alpha
proposes the hollow cube as a counterexample to the proof, he causes a discussion
in the classroom which produces a change in the definition of “polyhedron”: from

A polyhedron is a solid whose surface consists of polygonal faces. (p. 14)
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to

A polyhedron is a surface consisting of a system of polygons. (ib.)

A few pages later, we see that the discussion of Kepler’s star-polyhedron (the
so-called urchin), leads the classroom to question the notion of “face” (pp.17-
18), and the examination of the cylinder (p. 22) leads the classroom to wonder
about the notion of “edge”. The theoretical torsion which the various notions
undergo is shaped on the first physical, so to speak, step of the proof (or thought-
experiment), due to Cauchy, of the conjecture. This consists in removing one face of
the polyhedron and then stretch it flat onto a blackboard. From here on, stretching
becomes a usual practice of the text, for instance, when a concept definition is
modified so as to exclude an unwanted counterexample,” or when one reinterprets a
counterexample so that it no longer violates Euler’s Conjecture.*

In this paper, however, I will not follow the various phases of the discussion
held in the classroom. The focus of my paper will be instead on the last part of
P&R, where the last notion to be submitted to stretching becomes this very notion,
and Lakatos starts “to stretch the stretching”.? In this way the skeptic component
of Lakatos’s attitude resurfaces in the claim that no single language can model the
growth of knowledge, and that there is no hope that the mechanism of refutational
success, i.e. “concept-stretching”, could peter out. I will show that this same attitude
is the source of some of his most brilliant insights.

13.2 Injecting Truth and Meaning

P&R can be seen as a renewal of the classical debate between analytical and
axiomatic (or synthetic) procedures. In fact, it is framed within a broad context
where the refusal of the latter kind of procedures is linked to a strong criticism
of the traditional euclidean, or axiomatic, and formalistic school of mathematical
philosophy. It is not relevant here to fully detail the description of traditional
perspectives, so we will limit ourselves to remind just the basic notions that provide
the necessary background to settle Lakatos’s proposal.

In Euclidean Axiomatics, injection of truth and meaning is given at the outset by
means of definitions (which state which kind of entities we will dwell upon) and
postulates, or axioms (whose truth, guaranteed by intuitive evidence, is propagated
to any other assertion).

In Hilbertian Axiomatic Formal Systems both questions are displaced at the very
end of the construction. As regards the question of truth, it has been, so to speak,

3 And in this case one speaks of the method of Monster barring.
4 And in this case one speaks of Monster adjusting.

5 At p. 102, student Gamma answers Kappa back by saying: “You stretch the concept of concept-
stretching!”
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ignored and replaced by the requirement of consistency. As regards the question
of meaning, it has been postponed to the formulation of the axioms: for instance,
what it means to be an Euclidean point (or line, or plane, ...) is something which is
(implicitly) fixed by the axioms.

Lakatos intends to occupy a land between Euclidean and Hilbertian perspectives:
truth and meaning are injected in the course of the inquiry, without any hope to reach
an ultimate point. Both notions have a tentative, conjectural nature.

* As regards fruth: during the dialogue, after pupil Gamma has reminded that the
very term “polyedron” has been stretched to the point that it does not figure in
the theorem anymore, pupil Kappa adds

because of concept-stretching, refutability means refutation. So you slide on to the
infinite slope, refuting each theorem and replacing it by a more “rigorous” one, by one
whose falsehood has not been “exposed” yet! But you never get out of falsehood (p.

100).

* Asregards meaning: if one tries to stop the previous “infinite slope” by exploiting
monster-barring definitions, and so try to keep away counterexamples generated
by concept-stretching, pupil Kappa warns that

you will slide on to another infinite slope: you will be forced to admit of each “particular
linguistic form” of your true theorem that it was not precise enough, and you will be
forced to incorporate in it more and more “rigorous” definitions couched in terms whose
vagueness has not been exposed yet! But you never get out of vagueness (p. 100).

In opposition to both kinds of what he calls traditional perspectives, Lakatos
proposed to assimilate mathematical theories to general scientific theories, turning
them into quasi-empirical theories. In the Introduction to P&R Lakatos argues that
he will challenge mathematical formalism elaborating

the point that informal, quasi-empirical, mathematics does not grow through a monotonous
increase in the number of indubitably established theorems but through the incessant
improvement of guesses by speculation and criticism, by the logic of proofs and refutations
(p- 5).

13.2.1 The Logic of P&R

There are a few (quasi-)technical terms one has to get acquainted with in order to
understand Lakatos’s proposal.

1. Central for Lakatos’s philosophy of mathematics is his characterization of the
concept of mathematical proof, which occurs near the beginning of the text:

Teacher: I propose to retain the time-honoured technical term ‘proof’ for a thought-
experiment —or ‘quasi-experiment’— which suggests a decomposition of the original
conjecture into subconjectures or lemmas, thus embedding it in a possibly quite distant
body of knowledge (p. 9).
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2. After “proof”, we remind the notion of proof analysis, which means the
production of what we might normally call the “proof”: the list of “lemmas”
into which the proof (thought-experiment) is decomposed. We are doing proof
analysis when we study the precise conditions under which the moves taken in
the proof can be made, or are correct.

3. An important role is played by the notions of local counterexample and global
counterexample. Global counterexamples show that some universal statement
is false, but in a way that does not require any reference to the proof of that
statement. It is a sort of counterexample which isn’t at odds with any step
produced by the proof analysis. A local counterexample, by contrast, is a property
pertaining not to a statement but to a proof of a given statement. Thus the
definition of a local counterexample refers both to a statement and to a proof
of it, regarded as a sequence of other statements.

4. The goal of the development of a proof, like that of Euler’s formula, is a
rigorous theorem, which Lakatos calls the principle of retransmission of falsity,
meaning that all global counterexamples must become (also) local. Falsity must
be retransmitted from the naive conjecture (decomposed by the proof) to the
lemmata (provided by the proof analysis). That is, any counterexample to the
theorem should be a counterexample to some step in the proof-analysis of the
theorem:

Lambda: A proof-analysis is ‘rigorous’ or ‘valid’ and the corresponding mathematical
theorem true if, and only if, there is no ‘third-type’ counterexample to it (p. 47).

(We remind that the third-type counterexamples are those that are global — they
refute the theorem at hand — but not local — they do not falsify any step of the
proof.)

5. The last notion to consider is the principle of the retransmission of truth, a
notion which pertains to the case of counterexamples which are both local and
global. The hollow cube, for instance, which is a cube with a cube shaped hole
in it, is a counterexample which is both global (since V — E 4+ F = 16 — 24 +
12 = 4), and local (since it cannot be stretched flat on the blackboard having
had a face removed). To treat this type of counterexamples the faulty lemma is
made up a condition of the original conjecture, restricting in this way its range
of applicability. The proof is left unchanged, and just like with the question of
the convexity, in this case too we have no assurance that even some polyhedron
which does not satisfy the lemma (become part of original conjecture) is still an
Eulerian polyhedron.

It is tempting to see the last two notions as very Kin to, respectively, the soundness
and the semantic completeness of a (formal) theory, the properties which impede the
overgeneration and undergeneration of mathematical truths.

However, because of the peculiarities of Lakatos’s perspective, this is a temp-
tation we must resist. The evolution of the initial “proof” sketch, or thought-
experiment, results from interactions with various kinds of counterexamples. At
each stage the proposed counterexamples are examined evaluating the reasons for
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the possible inadequacy of the proof, where such an examination may provide hints
as to how both the steps and the notions involved in the proof can be modified.

The program that in this way comes to light is that of an open framework:
not necessarily the described procedure produces a convergent sequence of proofs
flowing into a definite, ultimate proof, least of all in a definite proof of the
original conjecture. And the possibility to abandon the original conjecture cannot
be excluded.

P&R takes into account various ways of coping with counterexamples. It
would be however a serious mistake to search for the correct method. The correct
perspective is precisely given by the interplay of different methods to face different
kinds of counterexamples; i.e., the interplay between generation and evaluation of
counterexamples. What is worth to stress is that both generation and evaluation
are driven by the proof. As student Beta admits, the logic of conjectures and
refutations has no starting point (naive conjectures are preceded by many ‘“pre-
naive” conjectures and refutations), but the logic of proofs and refutations has: it
starts with the first naive conjecture to be followed by a proof, intended as a thought-
experiment (p. 74).

13.3 Popper Comes into Play

As we said in the Introduction, according to a largely shared opinion, Lakatos was
able to shape his own research project by distancing Popper, that is, by modifying
Popper’s critical falsificationism with regard to two core aspects: first, he extended
falsificationism also to mathematics, and, second, replaced Popper’s strict notion of
refutation with a much more elaborate battery of strategic moves in order to cope
with cropping out counterexamples.

As 1 said, the relationship between Popper’s falsificationism and Lakatos’s
fallibilism is a question which deserves a better consideration. As regards the
extension of the falsificationist perspective also to mathematics, in fact, interesting
and relevant suggestions are already present in Popper (1946). Facing the central
question: “Why are the logical calculi — which may contain arithmetic — applicable
to reality?”, he notes that certain calculi — for example, the arithmetic of natural
numbers, or that of real numbers — are helpful in describing certain kinds of facts,
but not other kinds; and he adds:

In so far as a calculus is applied to reality, it loses the character of a logical calculus and
becomes a descriptive theory which may be empirically refutable; and in so far it is treated
as irrefutable, i.e., as a system of logically true formulae, rather than a descriptive scientific
theory, is not applied to reality (p. 54).

These substantial hints towards the possibility to frame also mathematics within
the falsificationist perspective are then deepened in a significant way for our
argument when Popper notes that a proposition such as “2 + 2 = 47, if applied to
apples, is taken to be irrefutable and logically true, but it does not describe any fact
involving apples — any more than the statement “All apples are apples” does. Like
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this latter statement, it is a logical truism; and the only difference is that it is based,
instead of on the definitions of the signs “All” and “are”, on certain definitions of the
signs “27, “4”, “+”, and “=". (Definitions which may be either explicit or implicit.)
We might say in this case that the application is not real but only apparent; that we
do not describe here reality, but only assert that a certain way of describing reality
is equivalent to another way.

However, there is a second sense in which one could interpret a sentence such as
“2 +2=4": it may be taken to mean that, if somebody has put two apples in a certain
basket, and then again two, and has not taken any apples out of the basket, there will
be four in it. In this interpretation “2 + 2 = 4” helps to calculate, i.e. to describe
certain physical facts, and the symbol “+” stands for a physical manipulation —
for physically adding certain things to other things. But in this interpretation the
statement “2 + 2 = 4” becomes a physical theory, rather than a logical one; and as a
consequence, we cannot be sure whether it remains universally true.

Very easily Popper provides examples of models in which “2 + 2 = 4” is not
applicable (a couple of rabbits of different sexes, or a few drops of water, ...), and
to criticism based on the convinction that the equation “2 + 2 = 4” only applies to
objects to which nothing happens, he replies that then that equation does not hold for
“reality” (for in “reality” something happens all the time), but only for an abstract
world of distinct objects in which nothing happens.

And Popper concludes maintaining that

whenever we are doubtful whether or not our statements deal with the real world, we can
decide it by asking ourselves whether or not we are ready to accept an empirical refutation.
If we are determined, on principle, to defend our statements in the face of refutations [...],
then we are not speaking about reality. Only if we are ready to accept refutations do we
speak about reality (Popper, 1946, p. 56).

Pertinent to the previous remarks is also the following passage, taken from
unpublished notes of 1954-1955, quoted by Bar-Am in Bar-Am (2009), which
reveals much about the character of the course in logic and scientific method Popper
taught at LSE from 1946 to 1969:

The idea that science “proves” is wrong. The word “proves” is being misunderstood. In the
sense of “prove” discussed above science has “proved” very little. Look at the changes in
science in the last 2,000 years. If on important points science can change its teaching so
much in the course of time, the proof, if it occurs at all in science must be comparatively
rare . ..it marked a kind of false idea in science, an idea of science in which science cannot
change, only grow.

Lastly, I think it is appropriate also to mention the sort of manifesto which we
find in the very first lines of Popper (1947), and which is as good for him as for what
Lakatos was going to do a few years later. Confronted with the problem of giving a
satisfactory definition of “valid inference”, Popper says that

Our method will be as follows: after having introduced, in section (1), a few auxiliary
technical terms, we shall propose a definition, criticize it, and replace it by a better one,
and repeat this procedure. (p.251)

The affinity between this position and Lakatos’s stance is impressive.
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13.4 Back to Lakatos

I think that attending Popper’s courses and seminars was a true “training ground”
for most of his students, Imre Lakatos included.®

It is in fact difficult not to see a deep link between Popper’s playing with the
logical notions’ and Lakatos’s perspective, in which, I remind, the starting point is
got by adapting a somehow devised “proof-sketch” to new problems waiting for a
solution.

13.4.1 Concept-Stretching

On p. 93 of Lakatos (1976) pupil Pi notes that it is impossible to keep refutations
and proofs on the one hand and, on the other hand, changes in the conceptual,
taxonomical, linguistic framework. Facing a counterexample, one can choose to
disregard it because it has to do with notions not belonging to his language L1, or
to accept the counterexample passing by concept-stretching to a new language £,
...Commenting on this point, pupil Gamma foresees the possibility of inconsistent
languages:

we may have two statements that are consistent in £, but we switch to £ in which they

are inconsistent. Or, we may have two statements that are inconsistent in L, but we switch

in L, in which they are consistent. [...] The growth of knowledge cannot be modeled in
any given language [my emphasis].

The skeptic component of Lakatos’s attitude surfaces in the claim that no single
language can model the growth of knowledge, and that there is no hope that the
mechanism of refutational success, i.e. the mechanism of “concept-stretching”,
could peter out. This same attitude is the source of some of his most brilliant
insights.

This is also the point where Lakatos goes beyond Popper’s bounds of reasoning.
In a similar vein, in fact, and of course with reference to the consequences of Godel’s
results of 1931,% in Popper (1946) Popper maintains that, although it is possible,
for any given valid intuitive inference, to construct some language permitting the
formalisation of that inference, it is not possible to construct one language or
calculus allowing us to formalise all valid intuitive inferences, provided of course
that we do not exploit procedures of an entirely different character. That is to say,
procedures which, as the so-called w-rule, allow inferences which can be drawn

61 think important to remember that Lakatos’s paper was first read in Karl Popper’s seminar in
London in March 1959.

7 See Binder and Piecha (2017) for an exhaustive and very clear exposition of Popper’s investiga-
tions. Other details are available in Moriconi (2019).

8 And to the way they were acknowledged by Tarski in (2002).
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from an infinite class of premises. These remarks by Popper, however, point to the
openness of the research, without making concessions either to skepticism or to
meaning variance. Also Lakatos’s remarks are strictly connected to the results of
incompleteness, and to the consequent failing of categoricity of first order theories.
In What does a mathematical proof prove?, which is more or less contemporary
to Lakatos (1976),9 in fact, he stresses that as a consequence of those proofs, we
cannot fully control formal proofs, meaning that we cannot avoid that they prove
much more than we want them to prove, without being possible to impede that
the proof of an arithmetical theorem turns at the same time into the proof of some
theorem in other absolutely unintended structures. To put it from the point of view
of the system of axioms, this entails that we cannot avoid that the axioms in the most
important mathematical theories implicitly define not just one, but quite a family of
structures, with the concrete possibility that there exist statements which are true in
one structure but false in the other. “Truth value” and “meaning” continue to proceed
hand in hand, without the possibility to disentangle the structure we intended from
the multiplicity implicitly characterized by our axiomatic framework.

As we already reminded, pupil Kappa warns about the two infinite slopes one
risks to slide onto: on the one hand, the slope induced by the attempt to replace each
refuted theorem by a more “true” one; on the other hand, the slope generated by the
attempt to reach the most precise linguistic form of the theorem. There is, however,
no hope to reach a stop: “you never get out of falsity”, and “you never get out of
vagueness”. And he seals his argument by stressing that

For any proposition there is always some sufficiently narrow interpretation of its terms,
such that it turns out true, and some sufficiently wide interpretation such that it turns
out false. Which interpretation is intended and which unintended depends of course on
our intentions. [...] Concept-stretching will refute any statement, and will leave no true
statement whatsoever (p. 99) [My emphasis].

13.4.2 I Shall Stretch “Stretching”

The last notion to be submitted to “stretching” is therefore this very same notion,
and it is intruiguing to compare the previous quoted assertion with the following
quotation from Wittgenstein (Philosophical Investigations,§ 201):

[...] no course of action could be determined by a rule, because every course of action can
be made out to accord with a rule.

This is the assertion which famously constitutes the starting point of the argument
developed by Kripke in his Wittgenstein on Rules and Private Language of 1982,1°
and it promises to be very interesting to consider this part of the dialogue keeping
in mind the themes of Kripke’s book. Clearly, Lakatos does not show interest in

9 See Lakatos (1978).
10 Kripke (1982).
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questions concerning the topic of “private language”: the line of his argument which
is here pertinent, in fact, is that which hinges on the distinction between intended
and unintended interpretations.'!

And the closeness with issues that will be employed by Kripke — especially with
the mathematical example Kripke provides to support his interpretation of the rule-
following paradox— is particularly noteworthy when Lakatos, following the thread
of skepticism, arrives to stretch the meaning of the arithmetical (as for instance,
addition) and logical (as for instance, the universal quantifier) notions.

13.4.3 Stretching Arithmetical Notions

Answering to pupil Gamma, who hopes to reach a point where the meanings of
the terms will be so crystal clear that there will be one single interpretation, as it
is the case with 2 + 2 = 4, pupil Kappa shows that it is possible to stretch also
this proposition by stretching the meaning of “addition”. To this aim it is envisaged
a generalized notion of addition which could be called addition as package. The
usual addition'? is recovered from that as the very special case of packing where the
weight of the covering material is zero.

Like Kripke’s skeptic, also Lakatos’s skeptic does not challenge the normal
arithmetical operations, but differently from the former, he does not search for
evidence that in making calculations what is really intended is “usual addition” and
not “addition as package”.!3 He does not complain about the lack of some fact of
the matter (either physical or mental, like “dispositions” to react in a certain way)
that can constitute the state of meaning supporting the usual addition rather than the
addition as package. His skepticism is much more kin to the classic one, empirically
coloured. As Kappa says:

But there are no [inelastic, exact] concepts! Why not accept that our ability to specify what

we mean is nil, therefore our ability to prove is nil? [...] If you want mathematics to be

meaningful, you must resign of certainty. If you want certainty, get rid of meaning. You
cannot have both (p. 102).

From our point of view, beyond looking forward, it is also interesting to look
backward: it is in fact immediate to remind (Popper, 1946), where we encountered
an analogous variation on the operation of addition, but of course absolutely lacking
any skeptic trace.

1T Few pages before, the character Pi said

The [Euler’s] conjecture was true in its intended interpretation, it was only false in an
unintended interpretation smuggled in by the refutationists. (pp. 84-5).
12 “[The addition in the originally intended sense” (p. 102), as Kappa points out [my emphasis].
13 Assuming that in both cases we question about which rule is understood given a finite amount
of behaviour.
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Popper’s speculation on the applicability of logic and arithmetic to reality was, so
to speak, the breach through which Lakatos could insert his quasi-empirical proposal
skeptically coloured.'*

13.4.4 Stretching Logical Notions

Arguing about the cylinder, and wondering which kind of counterexample to the
“Cauchy proof™ it is, pupil Gamma claims that the falsity of “there is a diagonal of
the circle that does not create a new face” entails the truth of its negation, namely
of “all diagonals of the circle create a new face” (p. 44). Lakatos is well aware that
the latter sentence has to be treated cautiously since impinging on the basic relation
“truth value-meaning”: pupil Alpha, in fact, stresses that, being a universal sentence
which cannot be instantiated, one could draw the consequence that far from being
true, it is meaningless. The negation of a meaningless sentence, however, cannot be
false, but it would result meaningless in its turn. As a way out from this impasse,
Alpha provides a reformulation the original universal sentence in something like:
“for all x, if x is a diagonal, then x cuts the face into two; and there is at least
one x that is a diagonal”, where the existential clause hidden in the lemma is
made explicit.!> This is the move appropriate to make the rules of the Aristotelian
square work: being a conjunction, say of the form Vx(D(x) — C(x))&3IxD(x),
the latter sentence is false, due to the falsity of the second conjunct. Therefore,
it follows the truth of its negation, say of dx(D(x)&—(C(x))) vV —=3xD(x), due
to the truth of the second disjunct. Confronted with Alpha’s manoeuvre, Gamma
maintains the meaningfulness of his position, consisting in the acknowledgment of
the existence of vacuously true statements. And Lakatos highlights how remarkable
was also this modest stretching underwent by the universal quantifier, consisting
in removing the existential import from its meaning, so that it no longer applies
only to non-empty classes.'® And he emphasizes that this was an important event,
since it draws attention on the possibility that also logical notions experience

14 In Popper (1946) we find that Popper wonders why ought we avoid those breaches of the rules of
logic that we call “fallacies” if not because we are interested in formulating or deriving statements
which are true, that is to say, which are true descriptions of facts?

We undertake the “meta-linguistic” task of detecting the rules of inference of the language we
are investigating because we aim at formalising all those inferences which we intuitively know how
to draw; much as we know that it is impossible to build a single calculus able to formalise all valid
intuitive rules of inference.

15 And this is good, because the cylinder, from being a global but not local counterexample (the
third type), in this way becomes a global and local counterexample (the second type), abiding by
the “Principle of Retransmission of Falsity” (see point 4 of §2.1).

16 1 fact, he notes that

turning the empty set from a monster into an ordinary bourgeois set was an important
event —connected not only with the Boolean set-theoretical re-interpretation of Aristotelian
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some shifts of meaning. Moreover, and most importantly, this is the point where
“stretching” is connected to the process of assessment of the notion of logical truth.
Stretching the meaning of the universal quantifier, “so that it no longer applied
only to non-empty classes”, in fact, is a move which is framed within a short
description of the steps which brought to the characterization of the notions of
logical consequence and logical truth. Lakatos mentions Bolzano and Tarski, of
course, and their (successful?) attempt to characterize as logically true a proposition
when its truth depends only on the meaning of

those terms whose meaning can be stretched only at the cost of destroying the basic
principles of rationality (p. 103).

Lakatos, however, doesn’t miss to point to the difficulties encountered in finding
a demarcation line between stretchable, or descriptive, terms and unstretchable,
or logical or, to use Popper’s terminology, formative, terms, and acknowledges
to Popper’s inferential definitions of the logical notions —reference is to Popper
(1947)— the merit to have firmly linked those notions to “some basic principles of
rational discussion” (p. 104).

In Chap. 2, added by the Editors to the original Proofs and Refutations, Lakatos
goes back to this subject and draws attention to a new point, different from the
question of how to distinguish formative from descriptive signs. It is the fact that
in listing and characterising the formative signs one has to introduce a certain
amount of artificial limitation and rigidity which is quite foreign to naturally grown
languages and to intuitive inferences they allow to build. And he maintains that
the formalized concepts of logical consequence and truth, which until now were
generally used in the construction of deductive theories, by no means coincide
with the everyday concepts, with the everyday “pre-existing” way they are used.
In so doing, Lakatos is actually very near to Tarski’s perplexities concerning the
possibility to sintactically catch the essential content of the everyday notions of
logical consequence and logical truth,!” insisting that due attention must be paid
also to the translation rules which transfer the intuitive inferences to the formal
framework. He remembers that to overcome Tarski’s puzzle, which comes to the
fore in the final part of his 1936 paper “On the notion of logically following”,
Popper tried to reverse Tarski’s order of priority, taking the notion of “derivability”
as primitive, and showing that those signs are logical, or formative, which can be
defined with the help of that primitive concept. But it is clear that to find the correct

logic, but also with the emergence of the concept of vacuous satisfaction in mathematical
discussion. (p. 104).

17 See, for instance, the following Tarskian assertion:

no matter how we enrich the stock of rules of inference- we shall be able to construct
sentences which follow in the everyday sense from the theorems of the deductive theory
under consideration, but which cannot be proven in this theory on the basis of the accepted
rules. (Tarski (2002), § 1.4.2)
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order of priority is just one problem, and moreover a problem which Lakatos doesn’t
appreciate so much.

In a footnote on p. 123, Lakatos observes that an unsatisfactory trait of Popper’s
treatment of logical form is the unsufficient attention devoted to the important
problem of translatory definitions. The limit of Popper’s idea is to search for a
definition of valid inference depending only on the list of formative signs, whereas

[V]alidity of an intuitive inference depends also on translation of the inference from

ordinary (or arithmetical, geometrical, etc.) language into the logical language: it depends
on the translation we adopt.

Accordingly, Lakatos reminds that the case of Euler’s Conjecture —which was
of the form “All A’s [polyhedrons] are B’s [Eulerian]”- is in fact evidence that
assessing logical validity does not hinge only on the list of formative signs — in
this case the universal quantifier and implication —. The example of the cylinder
showed that deforming “A” —of course not a formative sign— so that it came to
include also the cylinder, entailed also a deformation of logical terms —in this case,
the universal quantifier—. And Lakatos emphasizes that this was an important event,
since it draws attention on the possibility that also logical notions experience some
shifts of meaning.

Lakatos’s brilliant insight, in this case, seems to foreshadow themes and proce-
dures from J. Etchemendy’s book The Concept of Logical Consequence,'® where
deformation of the logical constants is practised to the aim of reconciling Tarski’s
analysis of 1936 with informal notions, trying to escape from the danger of both
undergeneration and overgeneration of logical truths. Just to give a simple example
of this procedure, we remind that a consequence of the complex argument erected
by Etchemendy against Tarski’s analysis is that non-logical facts have no say in the
process of assessing the truth-value of a sentence, unless non-logical expressions
occur among the constant expression of the sentence. This assumption, however,
is trivially false: facts concerning the cardinality of the domain of the structure
are relevant to the truth value of a sentence even though it doesn’t contain any
expression of a non-logical type. Every sentence of the form “There exists at least
n individuals”, in fact, can be expressed by means of only existential quantifier,
negation, and identity. For instance, 3x3y(x # y) doesn’t contain any non-logical
constant, and says that there exist at least two individuals. Since it can’t be modified
by reinterpreting the (not occurring) non-logical constants, if the sentence is true
then it is dubbed logically true by the Reduction Principle.'® And this, obviously,
is absurd. To overcome this difficulty, and in this way banishing the possibility
of overgeneration, Etchemendy stretches, we could say, the existential quantifier,
formally including this logical notion into the set of the variable expressions.
More precisely, he substitutes the existential quantifier “3” with a quantificational

18 Etchemendy (1990).
191t is the principle according to which the logical truth of a given sentence S depends on the

ordinary truth of the universal closure of the sentential function associated to S. For details see
Mariani and Moriconi (1997).
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variable “E” whose satisfaction domain consists of all subcollections of the
universe of the structure (which, it is one of the fundamental assumptions made by
Etchemendy, is fixed once and for all), instead of all individuals in the universe.
Consequently, the previous sentence 3x3Jy(x # y) would be logically true iff
VE(ExEy(x # y) were ordinarily true. That is to say, iff every subcollection of the
universe contained at least two elements. This last statement, however, is of course
false: there are singletons. Thus, rightly, we get that Ix3y(x # y) isn’t logically
true.

Although empathic to an open idea of deformation of the concepts involved in the
conjecture under attack, manoeuvres of the kind exploited by Etchemendy, open also
to “a deformation of ‘all’ into ‘no™ (p. 103), are not, however, what Lakatos was
searching for. His aim, I think very well attained, was instead to bring out the link
deeply connecting definitional procedures with the improving steps generated by the
initial proof and the associated proof analysis (see points 1. and 2. of Sect. 13.2.1).
All must be firmly grounded in the proof of the conjecture which is the real starting
point of the growth and evolution of informal mathematical knowledge. By itself,
the conjecture is not enough: it has to be supplied by a “proof”, in the sense of point
1. of Sect. 13.2.1, which actually opens the way to the improvements of the initial
“proof analysis” which lead possibly to a new proof of the original conjecture, but
also to the possibility that we try giving up the conjecture and replace it by a new
(possibly completely) different one.

13.5 Conclusion

Having outlined some of the remarkable issues from P&R, I'd like lastly to consider
a much less satisfactory position held by Lakatos, that is his firm belief that in
formal mathematics there is no room for speaking of a growth of mathematical
knowledge. In the already quoted (Lakatos, 1978), Lakatos provides a three-layered
classification of mathematical proofs:

1. pre-formal proofs
2. formal proofs
3. post-formal proofs

and he stresses that proofs of type 1 and 3 are kinds of informal proofs. Relevant
for our argument is the comment he adds in order to clarify the nature of post-
formal proofs. He says that they fall under two types. The first one is exemplified
by the Duality Principle in projective geometry,”? the second one by the proofs of
undecidability (and I think he meant to say “of incompleteness and undecidability”).
He emphasizes that the Duality Principle works actually as a sort of meta-theorem,

20 On a different plane, but equally pertinent, he could have mentioned other meta-theorems like
the Deduction Theorem, the Léwenheim-Skolem Theorem or G’odel’s Completeness Theorem.
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or lemma, which allows to transform a theorem concerning “points” and “lines”
in another one in which the words “point” and “line” are interchanged. The proof
that brings us from the first to the second theorem, thanks to the Duality Principle,
is an argument which cannot reach its completion without specifying the concepts
of “provability” in the relevant system, of “theorem” in the system and so on. In
other words, by exploiting something like the Duality Principle we don’t prove a
proposition which concerns just lines or points, but also points, lines, provability,
theoremhood and so on.?!

Turning to the second type of proofs, the proofs of undecidability, I rate
opportune to stress that Lakatos overlooks the fact that also Godel’s Incompleteness
Theorems “play a double role”. On the one hand, indeed, they are meta-theorems
in which, besides number-theoretical expressions, also meta-theoretical notions as
substitution, theoremhood, ...are involved. On the other hand, however, thanks
to the arithmetization of the meta-theory?> they are also plain theorems. Lakatos
conflates this kind of proofs and the so-called Godel’s proof that his undecidable
sentences is true (i.e. true in the standard model). But, he adds,

such post-formal proofs are certainly informal and so they are subject to falsification by the
later discovery of some not-thought-of possibility.

Admittedly, this remark is rather puzzling: actually, the latter proof rightly comes
under the heading “informal proof”, but this same categorization is hardly fitting
for the other mentioned (meta-)theorems. I think that what makes Lakatos’s classifi-
cation not completely satisfactory is the fact that it leads to conflate the meaning
of “axiomatization” and “formalization” (as it is explicitly declared at p. 67 of
Lakatos (1978)). Elsewhere, working on the basis of widespread ideas, I supported
a representation of mathematical practice within a three-level framework:

1. informal, or pre-formal, mathematics,
2. (informal) axiomatic theories, and
3. formal theories.

where it is to be stressed that the three phases do not delete each other; all of
them, so to speak, live together. Formal theories cannot be studied separately from
all the non-formal, or pre-formal, background behind them.?3 The step from the
second level to the third one reflects of course the remarkable change occurred
between the end of nineteenth century and the Thirties of the twentieth century,
when formalization came to the fore. Frege’s and other people’s discovery of the
possibility to formalize mathematical knowledge produced in fact a new theoretical
subject: formal theories. Here, “formal” extends its meaning, since

21 And analogously, in the other results mentioned, not just formulas, but derivability or satisfiabil-
ity of (set of) formulas.

22 Also called godelization.
23 See Moriconi (2018).
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* On the one hand, it means that a given part of mathematical knowledge undergoes
a process of rebuilding which aims at making explicit its logical structure so
that the justification procedure of informal mathematical proofs can be fully
understood.

* On the other hand, “formal” means that we give up using natural languages and
adopt conventional artificial ones, without any particular meaning assigned to
(strings of) the signs of the language.

Axiomatization is distinct from formalization, where the latter notion refers to the
second meaning of “formal”; and this, of course, even though axiomatization is a
necessary condition of formalization, and even though any axiomatization exploits a
(previous) work of formalization (referring in this case to the first sense of “formal”).

However, it would be the outcome of a misunderstanding to consider the
construction of a formal theory as a simple work of decoration. Indeed, a formal
theory produces new questions, new knowledge, and new standpoints: in a word,
and contrary to what Lakatos was inclined to believe, it produced and produces a
rich growth of mathematical knowledge. The third layer marks the point where the
system, beyond being the framework where investigation is developed, becomes an
“object” of study in itself. First of all, in fact, without such notion of a formal system
it would have been impossible to get the incompleteness results, and also to develop
a formal theory of the way in which fruth can be attributed to a sentence of a formal
mathematical theory. Moreover, one could wonder whether when a formal proof of
a mathematical sentence is available, we gain some knowledge which goes beyond
knowing that sentence is provable (in a pre-formal theory, for instance). We can for
instance argue about, and elaborate on, both the proof of a sentence —by providing a
normal proof, or getting a speed-up, or extracting pieces of computational data from
the proof of a sentence of first-order Peano Arithmetic— and its provability.

Lakatos does not like this kind of speculations, and I think that this fact doesn’t
depend only on his inclining to empiricism. It is deeply rooted in the actual
difficulties he met in devising a program that I would like to call of “informal rigor”;
that is, a program incorporating the idea of providing precise analysis of notions
implicit in common mathematical reasoning and practice by trapping them between
formal notions.?* True, the aim of an open framework® doesn’t fade away, even if
we have to take into account the fact that, embedded into the text of the dialogue,
there is the attempt to reach what we have called “The Logic of P&R”, and character
Lambda (with subsequent integrations by Omega and Zeta) presents the “official

241 am of course borrowing the term, and the idea, from G. Kreisel’s paper of 1967, Informal
Rigor and Completeness Proofs, which was published in the volume Problems in the Philosophy
of Mathematics, edited by 1. Lakatos. In the first 50s, Kreisel had developed the no-counterexample
interpretation of Peano Arithmetic: for interesting remarks on this point, involving also Lakatos’s
P&R, see Fichot (2012a,b).

25 See Sect. 13.2.1.
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statement” of the heuristic rules of the method of proofs and refutations.?® But the
project remains in need of a completion.

First, because of a loose formulation which makes it difficult to evaluate the rules:
Rule 2, for instance, demands

to add to the proof-analysis a suitable lemma that will be refuted by the counterexample
[my emphasis].

The occurrence of the adjective “suitable” stresses that the added lemma must be
true to the spirit of the relevant conceptual experiment, so that ad hoc and casual
conjectures are excluded: this caveat, however, is proposed without providing any
hint of how to ascertain that the goal will be, or has been, attained.

Second, the project is weakened by a not completely satisfactory characterization
of the notion of “formal”, and by the firm belief that formal methods are anyway
absolutely fruitless, so that no sort of dialectic between informal and formal
notions is pursued. A consequence of these contrasting motivations is the substantial
inability to produce new interesting lines of research: among the examples Lakatos
makes it is worth remembering the possibility to falsify “the Zermelo-Fraenkel and
kindred systems of formalized set theory”. The argument seems to develop through
the following steps.

1. Godel had the firm opinion of the falsity of Cantor’s continuum-hypothesis.

2. Godel proved the (meta-)theorem asserting that (the Axiom of Choice and)
Cantor’s continuum-hypothesis is (are) consistent relatively to the Zermelo-
Fraenkel and kindred systems of formalized set theory.

3. Thus, it is impossible to disprove in them Cantor’s continuum-hypothesis.

4. Therefore, those systems are falsified.

Note: they are not rated to be unsuitable and in need of improvements. They are
falsified.

In my opinion, the harshness of this conclusion, together with the already
mentioned inability to produce new interesting lines of research while remaining
within the same framework, are responsible for his shift from the history and
philosophy of mathematics to the history and philosophy of the empirical sciences.
In 1965 he organized in London an International Colloquium in the Philosophy of
Science, which was an epoch-making event. The most famous of the “Conference
Proceedings”, Criticism and the Growth of Knowledge, contains his paper Falsifica-
tion and the Methodology of Scientific Research Programmes which marks truly a
turning point in the perspectives of his epistemological investigations.

26 See Lakatos (1976), pp. 50, 58, and 76.
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Chapter 14 )
A Categorical Reading of the Numerical e
Existence Property in Constructive

Foundations

Samuele Maschio

Abstract We propose here an analysis based on syntactic categories and internal
categories of existence properties. These metamathematical properties are peculiar
of constructive theories, since they bring the internal notion of existence back
to the external one, in accordance with the informal paradigm for constructivism
known under the acronym BHK. Category theory is a powerful tool to analyse
this phenomenon, since a category is an environment which allows to describe
effectively internal and external notions and their relationship.

Keywords Constructivism - Internal categories - Existence properties

14.1 Ecxistence in Constructive Mathematics

In his “A Constructive Manifesto”, chapter 1 section 3 p.11 in Bishop and Bridges
(1985), Bishop was clear about his view on existence in mathematics:

Constructive existence is much more restrictive than the ideal existence of classical
mathematics. The only way to show that an object exists is to give a finite routine for finding
it, whereas in classical mathematics other methods can be used.

This view is clearly in contrast with a majority formalist view, defended e.g. by
Poincaré ((1906), troisieme article, III, and Troelstra and van Dalen (1988) p.19),
according to which

Existence can mean only one thing: freedom from contradiction.
or by Hilbert (in a letter to Frege, see e.g. p.69 of Shapiro (2005)):

if the arbitrarily given axioms do not contradict one another with all their consequences,
then they are true and the things defined by them exist.
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Indeed, this mainstream attitude directly leads to the identification of 3x P (x) with
—Vx—P(x) and ——3x P(x), which is exactly one of the methods to which Bishop
referred to in the quotation above; the position of constructivism towards these
methods is very well expressed by Bridges’ words in Bridges (2008), section 3.1:

how could a proof of the impossibility of the non-existence of a certain object x describe a
mental construction of x?

This strong philosophical (and methodological) constructive view on existence can
be translated in formal mathematical and metamathematical terms, as we will see in
the next sections.

It is sort of intuitive to understand that the constructive notion of existence is
captured by mathematical foundational theories for which the distance between the
mathematical level and the metamathematical one (in which the first is defined)
is minimized. Here we will use the descriptive and expressive power of category
theory to illustrate this fact in a more structured way: we will move from syntax and
mathematical theories to categories and internal categories, respectively, adopting
a methodology similar (to some respects) to that of algebraic set theory (see e.g.
Simpson 1999 or Maschio 2015).

14.2 A Paradigm for Constructive Proofs: BHK

In most textbooks about constructive mathematics (e.g. in Troelstra and van
Dalen (1988), chapter 1 section 3 p.9 and in Bridges and Vitd (2006), chapter 1
section 1.1. p.3), the underlying logical system is explained by means of an informal
interpretation of what is a constructive proof of a compound formula, known under
the name of BHK.! According to this interpretation:

(ABHK) aproof of P A Q is a pair (p, g) with p a proof of P and g a proof of Q;

(VBHK) a proof of P Vv Q is a pair (i, r) consisting of a proof r and a label i
declaring whether that proof is a proof of P or a proof of Q;

(—BHK) aproof of P — Q is a procedure f turning proofs p of P into proofs

f(p)of O;

(3Hk) aproof of 3x P(x) is a pair {a, p) consisting of an object a and a proof p
of P(a);

(VBHK) a proof of Vx P(x) is a procedure f which associates to each object a a
proof f(a) of P(a).

This interpretation does not say what is a proof of an atomic formula and it is
clearly informal. However, as we will see in the next two sections, there are at least
two ways to make it “formal”: one is syntactical, the other semantical.

I'The acronym BHK comes from the names of three mathematicians which contributed to the
constructive approach to mathematics, namely Brouwer, Heyting and Kolmogorov.
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14.3 A Semantic Counterpart of BHK

In order to concretely accomplish BHK, proofs should enjoy at least these two prop-
erties: a pair of proofs must be a proof and some (partial) functions sending proofs
into proofs must be proofs. Mathematically, we can render these requirements as
follows: if IP is a collection of proofs in BHK sense, then there must be an injective
pairing function pair : P x P — P, and P must be endowed with a (partial) function
from P to the set of partial functions from P to PP.

There is a meaningful structure validating these requirements: natural numbers.
In fact there is a primitive recursive bijective encoding of pairs of natural numbers
by means of natural numbers (p : (n,m) — 2"(2m + 1) — 1) with projections
p1 and po, and every natural number n represents a recursive (partial) function {n}
from N to N, whenever a Godelian encoding is fixed.

Using this structure on natural numbers, one can define the so-called Kleene
realizability which is a rigorous semantical account of BHK for Heyting arithmetics,
where proofs are interpreted as natural numbers. Kleene’s realizability relation,
which is represented by a formula x |- P (“x realizes P”), is defined by induction
on the complexity of the formula P:?

x I P =4 P for atomic formulas P;

(Arear) X IF P AQ =%l pi(x) IF P A pa(x) IF Q, that is, a realizer for P A Q
is a natural number encoding a pair of natural numbers in which the first
component realizes P and the second realizes Q;

(Vreal) X1 PV Q=% (p1(x) =0 A pa(x) IF P)V (p1(x) = 1A pa(x) I Q),
that is, a realizer for P Vv Q is a natural number enconding a pair in which
the first component is a label which tells whether the second component is
arealizer of P or a realizer of Q;

(=rea) X IF P = Q =% Vy(y IF P — {x}(») | Alx}() IF Q) that is,
a realizer of P — Q is a code of a (partial) recursive function sending
realizers of P to realizers of Q;

(3reat) x -3z P =% py(x) IF P[p1(x)/z], thatis, a realizer of 3z P is a natural
number encoding a pair in which the second component is a realizer of the
formula obtained from P by substituting z with the first component;

(Vrear) x IF Vz P =9 Vz({x}(2) | A{x}(z) | P), that is, a realizer of Vz P
is a code of a total recursive function sending each natural number n to a
realizer of P[n/z].

Using Kleene realizability in Kleene (1945), in Troelstra (1971) it was proved that
HA + 3x(x I ¢) & HA + ECTy + ¢, where HA is Heyting arithmetic and ECT
is the so-called Extended Church’s Thesis (see Troelstra and van Dalen (1988),

2 We always assume x and y not to occur in the formulas of which the realizability relation is
defined.
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chapter 4 section 4, p.199). In particular this provides a relative consistency proof of
HA -+ “All definable functions between natural numbers are computable”

with respect to HA.

There are many other notions of realizability arising from similar algebraic
structures, which are called partial combinatory algebras (see e.g. Van Oosten
(2008), chapter 1).

It should also be noticed that there exist in literature Kleene realizability models
for intuitionistic set theories like Intuitionistic Zermelo-Fraenkel set theory IZF (see
e.g. Friedman 1973, Rosolini 1982 and McCarty 1986); however in these cases
one need to modify the interpretations of primitive formulas and quantifiers; in
particular, since a realizer is a natural number, one cannot incorporate a witness
for an existential statement (which would be a set) into it.

14.4 A Syntactic Counterpart of BHK

Per Martin-Lof introduced his intuitionistic type theory (see Martin-Lof 1984,
Nordstrom et al. 1990) in the early 70’s. From the first lines of p.1 in Martin-Lof
(1975) one can understand his goal and the particular attention dedicated to the
meaning of existential statements:

The theory of types with which we shall be concerned is intended to be a full scale
system for formalizing intuitionistic mathematics as developed, for example, in the book by
Bishop. The language of the theory is richer that the languages of traditional intuitionistic
systems in permitting proofs to appear as parts of propositions so that the propositions of the
theory can express properties of proofs (and not only individuals, like in first order predicate
logic). This makes it possible to strengthen the axioms for existence, disjunction, absurdity
and identity. In the case of existence, this possibility seems first to have been indicated by
Howard, whose proposed axioms are special cases of the existential elimination rule of the
present theory.

Concretely, in Martin-Lof type theory a dependent sum type constructor X is defined
by the following four rules:

1. a formation rule

Atype B(x)type[x € A]
(Zx € A)B(x) type

3 The statement “All definable functions between natural numbers are computable” is not express-
ible as a formula in HA, but as a collection of formulas

Vxdly o(x, y) = eVx(p(x, {e}(x)))

for ¢(x, y) formula of HA.
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which states that one can form the dependent sum (Xx € A)B(x) of a family
B(x) of types indexed over a type A;
2. an introduction rule

acA b € B(a)
(a,b) € (¥x € A)B(x)

which states that all pairs (@, b) witha € A and b € B(a) are terms of type
(Xx € A)B(x);
3. an elimination rule

de (Xx € A)B(x)

C(z)typelz € (Zx € A)B(x)]

c(x,y) € C({x, y)Ix € A,y € B(x)]
Els(d, c(x, y)) € C(d)

which essentially says that nothing else is in (Xx € A)B(x) (in order to assign
an element of C(d) to each d € (¥x € A)B(x), it is sufficient to assign an
element of C((x, y)) toeachx € A and y € B(x));

4. an equality rule

acA b € B(a)

C(z)typelz € (Xx € A)B(x)]

clx,y) € C({x, y)[x € A,y € B(x)]
Els((a,b), c(x, y)) = c(a,b) € C({a, b))’

One of the key features of Martin-Lof type theory is the so called “propositions-as-
types” paradigm: logic and mathematics are identified. For example, the dependent
sum type X is used to represent the existential quantifier 3, which, as a consequence,
satisfies the following rules, which are obtained or derived from the rules above, by
reading some types P as propositions and by interpreting the relative judgements of
the form p € P as “p is a proof of P”.

Atype P(x) prop[x € A] acA b is a proof of P(a)
(3x € A)P(x) prop {a, b) is a proof of (3x € A)P(x)
d is a proof of (3x € A)P(x) d is a proof of (3x € A)P(x)

m1(d) :=Elg(d, x(x,y)) € A 2(d) := Elg(d, y(x, y)) is a proof of P (x| (d))

Hence, in Martin-Lof type theory the identification between ¥ and 3 imposes
the validity of the request about existential statements in BHK. Other constructors
of Martin-Lof type theory are designed in order to accomplish BHK via the
propositions-as-types paradigm.
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In other type theories, like in the Minimalist Foundation MF (see Maietti
2009; Maietti and Sambin 2005), which was introduced in order to provide a core
foundation compatible with the most relevant classical and intuitionistic, predicative
and impredicative, foundations, the paradigm propositions-as-types is not adopted.
In the formulation of MF there is a distinction between two kinds of types: logical
(propositions and small propositions) and mathematical (collections and sets) and
the existential propositions satisfy rules which are similar to those of X -types above;
however the elimination rule works only toward propositions. Hence one cannot in
general produce the witness required by BHK. However one can show that MF
admits a Kleene realizability interpretation (see Ishihara et al. 2018; Maietti and
Maschio 2015).

14.5 Existence Properties

In first-order theories the requirement on existential quantifiers from BHK cannot
be imposed in the formulation of the theory itself, as it is in fact done in Martin-
Lof type theory. However, it can be controlled a posteriori, after being reformulated
as a metamathematical property. The point is to find the right metamathematical
formulation. In the literature there are many proposals; the difference between them
consists in what they consider a witness for an existential statement should be.

In the first case witnesses are definable entities in the theory.

Definition 5.1 A first-order theory with equality 7 has the existence property (EP)
if whenever 7 F 3x P(x), there exists a formula Q(x), such that

TE3Ix Q) AVX(Q(x) — P(x)).

The existence property EP essentially means that if something satisfying a property
is proven to exist in 7, then something definable in 7 can be proven to satisfy that
property.

The intuitionistic set theory IZF (see Friedman and S¢edrov 1985) and the
constructive Zermelo-Fraenkel set theory CZF (see Swan 2014) do not have EP,
while, as we will see in a few lines, Heyting arithmetic HA has it. Classical theories
like Peano arithmetic PA and ZF+V=L, that is Zermelo-Fraenkel set theory with
the additional axiom that states that all sets are constructible, also have EP. If
PA  3x P(x), then one can take Q(x) to be P(x) A Vy(P(y) — x < y) which
works because of the minimum principle which is provable in PA. In ZF+V=L one
can do essentially the same, because there one can define a well-ordering on the
universe class V.

Although at first sight EP could be considered a good candidate to express the
BHK requirement about existential quantifiers, one could object that the “unique
existence” required in the definition could be proven in 7 by means of indirect
methods, thus producing a witness being only apparently “concrete”.
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Another option could be to consider a term existence property in which witnesses
are simply terms not containing variables. However this is not of great interest in this
framework:* terms representing definable objects can indeed be added to a first-
order theory leaving it essentially equivalent and turning, in the end, term existence
property into existence property.

Looking for something sufficiently simple to be considered “stable” from the
external point of view, one comes to numerals, that is natural (meta)numbers. In
fact the notion of numeral requires only the ability of juxtaposing symbols, which is
a minimal requirement for being able to formulate a first-order theory. In this sense
we can think of numerals as a good notion of witnesses. However they can only be
used as witnesses for those formulas in which the free variable represents a natural
number in the sense of the theory 7

Definition 5.2 A first-order theory of natural numbers 7 has the numerical exis-
tence property (nEP) if, for every formula P (x),> there exists a numeral n such that
T b+ P(mn), whenever 7 F 3x P(x). 7T has the unique numerical existence property
(nEP)) if, for every formula P(x), there exists a numeral n such that 7 + P(n),
whenever 7 + Alx P(x).

A first-order theory of sets 7, in which the existence of the set w is provable, has
the numerical existence property (nEP) if, for every formula P(x), there exists a
numeral n such that 7 + P(m), whenever 7 F 3dx € w P(x). T has the unique
numerical existence property (nEPy) if, for every formula P(x), there exists a
numeral n such that 7 + P(n), whenever 7 + 3lx € o P (x).°

The numerical existence property nEP essentially means that if a natural number
satisfying a property is proven to exist in 7, then a numeral can be proven to
satisfy that property. nEP; essentially means that definable natural numbers exactly
coincide with numerals.

Peano arithmetic PA, Zermelo-Fraenkel set theory ZF and, in general, classical
first-order theories 7 of numbers or sets (if consistent) do not have the numerical
existence property, not even the unique one. Indeed one can consider an independent
sentence I (which exists by Godel’s first incompleteness theorem): clearly 7 +
Ax((x =0A—=I) Vv (x =1AI))asaconsequence of the law of excluded middle;
however there cannot be a numeral n suchthat 7 - mn=0A-=I)v(n=1A1),
since in that case n would be O or 1 and we could hence prove —7 or / in 7. Heyting
arithmetic HA has the numerical existence property: this was proven by means of
realizability by Kleene (see Kleene 1945). CZF and IZF also have the numerical
existence property, as was proven in Rathjen (2005) Theorem 1.2. and in Beeson

4 The internal language of a doctrine in category theory is an example of framework in which
terms have a clear “stable” meaning, that is “arrows of the base category”, and where, hence, term
existence property would be meaningful.

5 'When we write a formula P(xi, ..., x,) we mean that P contains at most xj, ..., x, as free
variables.

6 In set theory, P (n) is defined as follows: P(0) =9¢/ 3x(Vy(y ¢ x) A P(x)) and for every natural
(meta)number n, P+ 1) =% Ix(Vy(y e x <> y enV y =n) A P(x)).
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(1985) chapter VIII section 9, respectively. Clearly, for first-order theories of natural
numbers nEP = EP + nEP, (hence HA has EP), while for first-order theories of
sets EP + nEP, = nEP, but the converse does not necessarily hold.

14.6 Categories of Definable Classes

The next step consists in organizing the content of a first-order theory with equality
in a category of definable classes and to introduce some useful subcategories.
We define the category DC[T] of the definable classes of 7 as follows:

1. we first fix two variables x, y;

2. the objects of DC[T] are formal expressions {x| P(x)} where P (x) is a formula;
we identify objects {x| P(x)} and {x| Q(x)} with P(x) and Q(x) provable to be
equivalent in 7T

3. an arrow from {x| P(x)} to {x| Q(x)} is a formula F'(x, y), such that

(@ F(x,y) b7 Px) A Q(y);
(b) F(x,y) A F(x,z) b7 y =z (where 7 is a fresh variable);

(¢) P(x) 7 AyF(x, y);

and we identify formulas provable to be equivalent in 7T

4. the composition G(x, y) o F(x, y) is defined as Iz(F (x, z) A G(z, y)) where z
is a fresh variable;

5. the identity arrow of an object {x| P(x)} is defined as the formula P(x) Ax = y.

For the theory 7 we can also define a category DG,y [T] having the same
objects as DC[T], but for which an arrow from {x| P(x)} to {x| Q(x)} is an equiv-
alence class [7(x)]~, ,, of terms t(x),” such that P(x) F7 Q(t(x)) with respect
to the relation ~p(yy for which 7#(x) ~p) s(x) when P(x) 7 1(x) = s(x);
the composition [s(x)]:Q(x) o [t(x)]~p of two arrows is defined by [s(z (x))]~
while the identity id(x| p(x)} is given by [x]~, .

The category DCy,, [T] is clearly a subcategory of DC[T]: just consider the
functor sending each {x| P (x)} to itself and each [¢ ()]~ pg to P(x) Ay = 1(x).

If T is a theory of natural numbers having at least O and the successor symbol
S as primitive function symbols, we denote with DC,,;;[7] the subcategory of
DC;.rm[ 7] which have the same objects, the same definitions of composition and
identity, but only those arrows which are representable by terms obtained using the
variable x and the function symbols 0 and S.

If T is a theory of sets, we first translate terms 7 of the language obtained
using the variable x and function symbols 0 and S into formulas [[t]] of T
as follows: [[0]] =%/ Vz(z ¢ v), [[x]] =% x = y and [[s(1)]] =%
Az ([tlz/y] AVu(u € y <> u =z Vue€Ez).

P(x)?

7 We will write t(xy,...x,) if the term ¢ contains at most xy,...,x, as variables.
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The objects of DC,,,;[7] are defined as those objects {x| P(x)} of DC[T] such
that P(x) b7 x € w; an arrow in DC,,4,[ 7] from {x| P(x)} to {x| Q(x)} is an arrow
of DC[T] of the form [[t]] A P(x) for some term 7 of the language obtained using
the variable x and function symbols 0 and S. One can prove that compositions and
identities inherited from DC[7 ] work with this restriction.

For every pair of objects A = {x| P(x)} and B = {x| Q(x)} in DC,,4;[T] an
injection J, a’tB can be defined as follows. If 7 is a theory of natural numbers:

JAB - DC,.[TI(A, B) — DC[TI(A, B)

nat

[t(X)]~p = P(x) Ay =t(x)

If 7 is a theory of sets and A and B are objects of DC,,,;[T1(A, B), J,f)l’,B is the
obvious inclusion of DC,,,[T1(A, B) in DC[T](A, B).

If the theory 7 has at least a definable element and a definable encoding of
ordered pairs, that is, if we assume that there exist a formula 7/(x) such that
T b+ 3lx1(x) and a formula Pr(x, y, z) with three free variables x, y, z such that

L. Prx,y,2) APr(x,y,Z) b7 z=12;
2. Prix,y, DA Pr(x,y, ) Frx=x'Ay=Y
3. b7 VxVy3z Pr(x, y, 2),

then DC[7] is a cartesian category: a terminal object 1 is given by {x| I (x)} and a
product of {x| P(x)} and {x| Q(x)} is given by the object {x|Iy3dz(P(y) A Q(z) A
Pr(y, z, x))} together with the obvious projections.

This is the case for all standard theories of natural numbers and of sets: in HA or
PA the formula 7 (x) can be taken to be x = 0 and Pr(x, y, z) tobe z = 2*(2y+1);®
in set theories like CZF, IZF and ZFC, I(x) can be taken to be Yy(y ¢ x) and
Pr(x,y,z)tobe z = {{x}, {x, y}}.*

In the rest of the chapter we will always implicitely assume 7 to be a first-order
classical or intuitionistic theory of sets or of numbers having at least a definable
element and an encoding of ordered pairs.

14.7 Existence Properties, Categorically

We now show what properties of the categories introduced in the previous section
correspond to the existential properties introduced in Sect. 14.5.

Before proving our characterization, let us recall some categorical notions: an
arrow e in a category C is a regular epi if there exist arrows f and g in C of which e
is the coequalizer, that is eo f = eog and for every arrow ¢’ such thate’o f = ¢’og,

8 The exponential 2(~) can be adequately represented by a definable relation.
9 Here z = {x, y} is an shorthand for Vu(u € z <> (u = x Vu = y))).
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there exists a unique arrow r such that roe = ¢’; an arrow e : A — B in C is a split
epi if there exists an arrow ¢’ such that e o ¢’ = idp.

Theorem 7.1 Let T be a theory of natural numbers or a theory of sets as in the
previous sections and let P(x) be a formula of T. Then

L.

2.

3.

T & 3x P(x) if and only if the unique arrow from {x| P(x)} to 1 in DC[T] is a
regular epi;

T E3x P(x)ifand only if [ (x) AP(y) : 1 = {x]| Q(x)} is a well-defined arrow
in DC[T] for every Q(x) such that P(x) b7 Q(x);

T has EP if and only if every regular epi in DC[T ] with codomain 1 is a split
epi in DC[T];

if T is a theory of natural numbers, [t (x)]:,m : 1 — {x| P(x)} is an arrow in
DC,.u/[T11if and only if there exists a numeral n such that n >y t(x);

if T is a theory of sets and [[t]] AVu(u ¢ x) : 1 — {x| P(x)} is an arrow in
DC,.u:[T), there exists a numeral n such that [[t]]AYu(u ¢ x) and [[n]]AVu(u ¢
x) represent the same arrow from 1 to {x| P(x)};

T has nEP if and only if every regular epi in DC[T] from an object A to 1 is a
split epi with right inverse of the form Jnl;,f‘ (f) with f in DCpy[T];

7. T has nEP) if and only ifJnl,’l’;‘ is a bijiection for every A in DC,4,[T].
Proof
1. Suppose that 7 + 3x P(x). Then one can prove that the unique arrow from

{x|P(x)} to 1 is the coequalizer of the two projections from {x|P (x)} x {x| P (x)}
to {x|P(x)}. Conversely, suppose that the unique arrow ! from {x|P(x)} to 1 is
the coequalizer of two arrows f and g; then if we consider the unique arrow i
from {x|P(x)} to {x|I(x) AJy P(y)}, thenclearly i o f =i o g. In particular, it
follows (since ! is the coequalizer of f and g) that there exists an arrow from 1
to {x|1(x) A Jy P(y)}; this entails that 7 = Ix P (x).

CIET 3l P(x) and P(x) B Q(x), then I(x) AP (y) b7 I(x)AQ(y), (I (x) A

PON)AUTX)AP@)Fry=zand I(x) =7 3y (x) A P(y)); conversely,
if I(x) A P(y) : 1 — {x]| Q} is a well-defined arrow in DC[T] for every Q(x)
such that P(x) 7 Q(x), then in particular /(x) F7 Iyl (x) A P(y)) and
I(X)ANPY)APE) 7 y=zsince T - 3Ix I(x), then T + 3ly P(y).

. Suppose that 7 has EP and suppose that P(x) A I (y), which is the unique arrow

from {x| P(x)} to 1in DC[T], is aregular epi in DC[T]; then by point 1. we have
that 7 F 3x P(x); as a consequence of EP, we have that there exists Q(x) such
that 7 F 3!x Q(x) and Q(x) F7 P(x). These conditions together with point 2.
allow to conclude that 7 (x) A Q(y) is a well-defined arrow from 1 to {x|P(x)}.
Clearly this arrow is a right inverse of the unique arrow from {x| P(x)} to 1.
Conversely, suppose that P (x) is a formula for which 7 F 3x P(x). By point 1.
the unique arrow from {x| P(x)} to 1 in DC[T] is a regular epi, hence it is a split
epi. This means that there is an arrow F(x, y) from 1 to {x|P(x)}. One can see
immediately that, since 7 F 3!x I (x), the formula F(x, y) is equivalent in T to
I(x) A3z F(z,y). If we take Q(x) to be Iz(F (z, x)), then the requirement of
EP, applied to P(x), is satisfied by Q(x).
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4. and 5. follow from the very definition of DC,,;[7] and of numerals. From
these, points 6. and 7. follow immediately. O

14.8 Internalizing DC[7] in Itself

From now on, we will consider only theories 7 which enjoy a primitive recursive
internal Godelian encoding of their syntax by means of natural numbers. We
also use, with abuse of notations, symbols for recursive function between natural
numbers (including a primitive recursive bijective encoding of natural numbers
p with primitive recursive projections p; and p»), since they can be adequately
represented in 7. In particular, every variable & in the syntax of 7 is encoded by a
numeral £. One can hence define a formula dc(x) =%¢ form(x) AVy(free(y, x) —
y = x) which expresses the fact that x is the code of a formula of 7 having at most
x as free variable, in such a way that the definable class ATy := {x|dc(x)}, which
is an object of DC[T], is an internalization of the collection of objects of DC[T]
itself. However, in the definition of DC[T ], we have identified definable classes
which were given by provably equivalent formulas. We hence need to take this into
account internally by means of the obvious internal equivalence relation =¢:

{x|3yJz(x = p(y, 2) Adc(y) Adc(z) Ader(y,z) Ader(z, y))} = I'Ag x T'Ag

where der(x, y) is a formula expressing the fact that the formula encoded by y can
be derived from that encoded by x in 7.

Analogously, one can define a formula fr(x) expressing the fact that x is the code
of a definable functional relation of the form F(x, y).

However, in order to encode the collection of arrows of DC[7T ], we need to keep
track of their codomains (which can not be reconstructed otherwise). We hence
consider the collection

ATy = {x|JyTz(x = p(y, 2) Afr(y) A dc(z) A der(y, sub(z,y, x)))}
(where sub(z, y, x) is a term representing a code for the formula encoded by z in
which the variable x is substituted with y after having renamed all occurrences of
the variable y with a fresh variable primitively recursively depending on z) which is
indeed an internal account of the collection of arrows of DC[7 ] once we consider
the obvious internal equivalence relation =; with domain

{x|yJz(x = p(y, 2) A yeATl'| A ze AT A

der(p1 (), p1(2)) Ader(pi(z), p1(»)) Ader(p2(y), p2(z)) Ader(pa(z), p2(»)))}.1°

011 C = {x| P(x)} is a definable class, then we write 7eC as a shorthand for P ().
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In DC[TT] one can also define internally arrows corresponding to the domain,
codomain, identity and composition operations (where we use the notation —
to denote the Godelian encoding in terms of primitive recursive functions of
connectives, quantifiers and equality symbols):

. the domain arrow is §g := xe AT Ay = El_ypl(x) : ATy — AT,

. the codomain arrow is §1 := xe Al'1 Ay = pa(x) : AT'1 = Al;

. the identity arrow is ID := xe ATy A y = p(xA(X=y), x) : ATy — ATy

. the composition arrow O : Pb(81,89) — AT}, where Pb(8;, §g) denotes the
obvious choice of a pullback for §; and &g, is more complicated but can be easily
formulated with some patience.

O R S

What really matters is that AT'[T] := ((ATg, =¢), (A1, =1), 8o, 81, ID, O) is
essentially an internal category (see e.g. MacLane and Moerdijk (1992) chapter V
section 7) in the elementary quotient completion of DC[7] with respect to the doc-
trine of its subobjects (subobjects in DC[T] can be represented by comprehension),
since the arrows 8y, 81, ID and O respect the internal equivalence relations = and
=.

One can notice that in the case in which a particular parametric version of
EP holds for formulas restricted to natural numbers (e.g. in classical set theory
and in Peano arithmetic), one can avoid internal equivalence relations and choose
representatives via a formula, obtaining an internal account of DC[7] as one of
its internal categories. More precisely, if Nat(x) is a formula in 7 expressing that
x is a natural number, the particular parametric version of EP we consider is the
following: whenever P(x, y) is a formula with at most x and y as free variables
such that P(x, y) =7 Nat(x) A Nat(y), there exists another formula Q(x, y) with
at most x and y as free variables such that

1. Q(x,y) =7 P(x,y);
2. THV¥x@y P(x,y) — Ay O(x, y));
3.Vy(P(x,y) < P(X, ) A Q(x, ) A QX ) Frz=17.

14.9 Numerical Existence Property and the Relation
Between DC[7] and AT [T]

In this section we recall a result in Maschio (2020) which connects internal
categories and the numerical existence property.

First, we can observe that, whenever one has a internal equivalence relation r :
R — I x I in a finitely complete category C, then the subset

{rroro fimoro f)|f € Home(1, R)} € Home(1, I) x Home(1, 1)
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is an equivalence relation which we denote with Ext(r). Using this fact, one can
define a category EXt(AT[T]) “externalising” the internal category ATL'[T] in
DCI[T] as follows:

. the collection of objects of Ext(AI'[T]) is Hompgr (1, ATg)/Ext(=0);
. the collection of arrows of Ext(AI'[T]) is Hompg7(1, AT')/Ext(=1);
. the domain function A is defined by Ao([f]) := [do o f1;

. the codomain function Aj is defined by A1 ([f]) :=[61 o f];

. the identity function id is defined by id([ f]) := [ID o f];

. the composition function o is defined by [g] o [ f] := [O o (£, g)].!!

AN AW

In general one can define a functor J : DC[T] — Ext(AT[T]) as follows:

1. If {x| P(x)} is an object of DC[T], then the formula P(x) is encoded by a
numeral cod(P(x)) for which clearly 7 F dc(cod(P(x))). We hence define
J({x| P(x)}) as the equivalence class represented by the arrow

I(x) Ay =cod(P(x)):1— Aly;

2.if F(x,y) : {x| P(x)} — {x| Q(x)} is an arrow in DC[T], then F(x,y)
is encoded by a numeral cod(F (x,y)) and Q(x) is encoded by a numeral
cod(Q(x)) and, hence, T + p(cod(F (x, y)), cod(Q(x)))eAT'{. We hence send
F(x,y) : {x] P(x)} — {x| Q(x)} to the equivalence class represented by the
arrow

I(x) Ay =p(cod(F(x,y)),cod(Q(x))):1— AT].

We can hence enunciate the following result which is proven in Maschio (2020) in
Theorem 7.4

Theorem 9.1 J is an isomorphism if T has the nEP.

14.10 A Categorical Reading of Numerical Existence
Property in Constructive Foundations

A category C with enough structure (e.g. a Heyting category or a topos) can be
thought of as a mathematical universe in which one can perform “internal mathe-
matics”. The internal mathematics performed in different categories satisfy different
principles and each category has its own internal groups, rings, preorders. .. As we
have seen, categories can also have their own internal categories. These internal
categories have a completely different nature than the category in which they live
(e.g. trivially objects of the external category form a set or a class, while in general

' We denote with (f, g) the unique arrow determined by the definition of pullback.



362 S. Maschio

the objects of objects of its internal categories need not be sets or classes). These
two different levels of categories can be thought of as representations of the two
levels corresponding to metamathematics and mathematics.

In our case the external category, DC[TT], is in fact defined in the metamathemat-
ical level: its objects are equivalence (meta)classes of formal expressions (forming
a countable (meta)set) and the same holds for arrows. The internalization AT'[T]
is an internal category of DC[7] of which the objects do not form a (meta)set,
although they form a class of elements from the point of view of the theory 7. We
could roughly say that DC[7] is an ordinary category from the point of view of the
metamathematician, while AI'[7] is an ordinary category from the point of view
of the mathematician working in the theory 7. We can think of AI'[7] as the best
representation of the category DC[ 7] that a mathematician working in 7 (and using
only the tools of 7)) can obtain. The metamathematician knows both the category
DC[77] and the internal category AT'[7] and he could ask himself whether from its
point of view AT'[7T] is a good representation of DC[7T]. This, as we have seen, is
done by means of a simulation of the notion of elements for objects of the category,
that is by means of global elements.

Theorem 9.1 essentially means that whenever the numerical existence property
is satisfied (which happens essentially only for some constructive theories), then the
metamathematician can consider AT'[7] a perfect representation of DC[7T]. This in
some sense breaks some portions of the floor separating the mathematical level and
the metamathematical one.

As we have already said, categorical language is not necessary to understand this,
however it provides a clearer picture, a concrete representation in which syntactical
aspects are organized in such a way that they can form structures which are more
familiar to mathematicians.
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