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Abstract
In recent years, one of the main thrusts of set-theoretic research has been the investigation 
of maximality principles for V, the universe of sets. The Hyperuniverse Programme (HP) 
has formulated several maximality principles, which express the maximality of V both in 
height and width. The paper provides an overview of the principles which have been inves-
tigated so far in the programme, as well as of the logical and model-theoretic tools which 
are needed to formulate them mathematically, and also briefly shows how optimal princi-
ples, among those available, may be selected in a justifiable way.

Keywords  Set theory · Universe of sets · Maximality principles · Hyperuniverse · New 
axioms

1 � The Question of Maximality

One of the main goals of current set-theoretic research is to identify and justify maximal-
ity principles for the universe of sets V.1 Although the standard axioms of set theory, that 
is, ZFC, provide a nice characterisation of all sets as elements of V, they are not able to 
establish the truth or falsity of fundamental set-theoretic statements. Therefore, one may 
legitimately expect that isolating further fundamental properties of V will provide us with 
crucial insights concerning these statements.
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1  As is known, V is recursively defined as follows: V0 = �,V�+1 = P(V�) , where � is a successor ordinal, 
and V𝜆 =

⋃

𝛼<𝜆
V𝛼 , where � is a limit ordinal.
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In recent years, following Gödel’s suggestion that maximality may be the key to a more 
thorough understanding of set-theoretic phenomena, set-theorists have focussed their atten-
tion on, among others, maximality principles.2 Informally, maximality principles prescribe 
that V is a very rich structure, in particular the richest possible allowed by ZFC. At a more 
technical level, addressing the maximality of V entails taking into account two features of 
the universe, that is, its height and its width. The height of the universe is expressed by the 
length of the sequence of ordinals indexing levels of V, whereas the width is expressed by 
the extent of the power-set operation, that is, by how many subsets of V� , for all ordinals � , 
are produced at each successor level V�+1.

As a consequence, the maximality of V can aptly be viewed as consisting of the follow-
ing forms of maximality:

Height Maximality V should be as high as possible: there should be as many as possible 
ordinals indexing levels of V

Width Maximality V should be as wide as possible: as many as possible subsets should be 
produced at successor levels

As far as the former is concerned, in the last few decades, forms of the Reflection Principle 
(RP) have gradually stood out as the most attractive candidates as the ‘ultimate’ maximality 
principles expressing the height maximality of V. Intuitively, RP can be described as asserting 
that the universe cannot be uniquely characterised by any given collection of first-order prop-
erties. As is often said, the universe is indescribable.3 Strengthenings of first-order reflection, 
in particular, second-order reflection (with second-order parameters), are able to prove that 
there exist ‘many’ large cardinals, such as inaccessibles and Mahlos (in fact, proper classes 
of them), whose existence cannot be proved in ZFC. However, there are some limitative 
results which prevent RP from being extended ‘too much’.4 As a consequence, one may legit-
imately ask: what, if any, is the maximal strengthening of RP, and how does one carry out 
such a strengthening mathematically? In recent years, the Hyperuniverse Programme (HP) 
has taken up the challenge of tackling these questions, by introducing a very strong reflection 
principle which embodies the ideal of a ‘maximal strengthening’ of RP (Sect. 4).

As far as width maximality is concerned, it does not seem plausible that something like 
RP may be extended also to the width of the universe, although attempts in this direction 
have been undertaken. As we shall see, HP follows a somewhat different strategy, by intro-
ducing a maximality principle which maximises the width of V by maximising its inner 
models (Sect. 5).

Now, HP commits itself to delivering maximality principles for the height and the width 
of V, but the language in which such principles are couched implies the availability of 

3  At least, this is the form in which the principle can be stated if one subscribes to actualism (for which see 
Sect. 3 of this paper), a view that some scholars view as originating from Cantor’s conception of a maxi-
mal, inextensible absolute infinite (for which see, in particular, Cantor’s 1899 letter to Dedekind, in Ewald 
(1996), pp. 931–935), but the introduction of RP’s may also be justified using a potentialist conception of 
V (for which see, again, our section 3, or Tait (1998)). Incidentally, Gödel was also a major advocate of RP, 
to the point that he seems to have surmised that the axioms of set theory should be reduced to one single 
reflection axiom (see also Wang (1996), pp. 280–285, and Ternullo (2015), pp. 431–435).
4  A full account of such limitations is in Koellner (2009).

2  For instance, see Gödel’s oft-quoted remark in Gödel (1947), pp. 478–479: ‘..I am thinking of an axiom 
which (similar to Hilbert’s completeness axiom in geometry) would state some maximum property of the 
system of all sets [...]. Note that only a maximum property would seem to harmonize with the concept of set 
[...]’. For a review of maximality principles in set theory, see Incurvati (2017).
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‘extensions’ of V. As a consequence, two issues immediately arise: (1) the issue of what 
conception of V is compatible with ‘extensions’; (2) the issue of what logic is most suit-
able to express maximality principles which refer to ‘extensions’. Both issues need careful 
addressing and, as we shall show, first-order logic will have to be strengthened to meet our 
purposes (Sect. 5.2). We will then be able to show that the programme’s maximality princi-
ples not only have deep consequences in V itself, but also in lower-level structures such as 
countable transitive models (whose collection we call the hyperuniverse) which turn out to 
be very useful for our approach (Sect. 5.3). The combination of height and width maximal-
ity principles, and the study of optimal versions thereof, will finally be taken into account 
(Sect. 6).

But before proceeding to review the mathematical work in full detail, in the next two 
sections, first (Sect.  2), we discuss what we call the ‘maximality protocol’, that is, the 
whole strategy behind HP’s maximality programme, and discuss the use of such protocol 
to find optimal maximality principles. Afterwards (Sect. 3), we describe the conception of 
sets in terms of which the mathematical formulation of HP’s maximality principles is best 
expressed.

Although also based on work expounded in other papers,5 the present paper is self-
contained, and represents the first comprehensive presentation of HP’s ‘maximality 
programme’.

2 � The Maximality Protocol

Maximality in set theory (and in V) has been advocated and expressed in many ways, and 
within many different theoretical frameworks.

For instance, as is widely known, Maddy has devoted quite a substantial amount of work 
to showing that maximality, as encapsulated by her maxim Maximize, is one of the funda-
mental drives of set-theoretic research, leading, among other things, to the maximisation 
of the iterative process of ‘construction’ of V itself.6 Moreover, on the ‘Maximize view’ of 
set theory, as Maddy is eager to show (with a view to providing arguments in favour of the 
acceptance of measurable, and other very large, cardinals), such axioms as V = L will have 
to be rejected, as they restrict the range of possible ‘isomorphism types’ in V.7

Authors such as Steel have presented an alternative way to express maximality, that is, 
as the maximisation of the ‘interpretative power’ of theories extending ZFC. In simple 
terms, given any two theories T1 and T2 extending ZFC by, respectively, adding two dif-
ferent (and sufficiently strong) large cardinal axioms, say, LC1 and LC2,8 whenever T2 is 
consistency stronger than T1 , then the latter theory will be ‘interpretable’ in the other, that 

5  See, in particular, Arrigoni and Friedman (2013), Antos et  al. (2015), Friedman (2016), Friedman and 
Honzik (2016), Ternullo and Friedman (2016) and Antos et al. (2020).
6  What has been for some time known as the ‘(maximal) iterative concept of set’ is described by, among 
others, Wang (1974) and Boolos (1971). Further discussion is in Parsons (1983) and Maddy (1988).
7  More specifically, Maddy’s argument is that, since V = L is inconsistent with the existence of 0# , then 
under ZFC+V = L , there will be fewer isomorphism types in V. See Maddy, Maddy (1997), pp. 219–232. 
Recently, the alleged ‘restrictiveness’ of V = L has been challenged by Hamkins (2014), and further dis-
cussed by Incurvati and Löwe (2016).
8  Or any two other theories whose consistency strength is, at least, that of ZFC+LC’s.
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is, the set of all sentences provable in T1 will be a subset of the set of all sentences provable 
in T2.9 This, in turn, will yield a (consistency-strength-induced) linear hierarchy of theories 
each extending the interpretative power of the previous ones. Thus, the whole hierarchy of 
large cardinals clearly maximises over the ‘interpretative power’ of theories.10

Other set-theorists, instead, have placed more emphasis on the maximising virtues of 
such axioms as forcing axioms, which yield absoluteness (itself, a form of maximality) 
across structures (the set-generic multiverse) which are of common use in many set-theo-
retic investigations.11

All of these approaches share one fundamental feature: they construe maximality with 
reference to, and in light of, specific theories. But another approach is possible, one which 
focuses on the very properties of the cumulative hierarchy (of V), which, in turn, originate 
from the aforementioned iterative concept of set. On this approach, the properties to be 
maximised do not relate to theories, but rather to intuitive aspects of the hierarchy of sets.

As we have already hinted at in Sect. 1, by referring to the height and width of V, the 
bottom-up process of construction of the hierarchy of all sets can be seen as consisting in 
iterating the power-set and adding (ordinal-indexed) levels (or, what is the same in ZFC, 
adding ordinals). Thus, by keeping this fundamental insight about V, the main items of V 
our principles will have to maximise are, precisely, power-sets and ordinals.

Now, one could also require that, along with these, one also maximises the cardinals. 
We may, for instance, want that, given a certain cardinal � in V, its successor, �+ , is as big 
as possible. Of course, if one has maximised the ordinals then also the cardinals will, inevi-
tably, turn out to be maximal, so cardinal maximality might just be seen as an intermediate 
step between ordinal and power-set maximality. However, as we will point out later on 
(Sect.  6.1), the maximisation of the power-set implies taking into account outer models 
which might not preserve the cardinals, so we will have to formulate ways to express cardi-
nal maximality in such models.

To sum up, the whole process of maximisation may be summarised as a single ‘maxi-
mality protocol’ as follows: 

(1)	 maximise the ordinals
(2)	 maximise the cardinals
(3)	 maximise the power-set

But this is not all there is to maximality on this approach, as one may also want to search for 
principles which maximise over more than just one of these three items (for instance, princi-
ples which are able to maximise over both the ordinals and the power-set). Ultimately, one 
might also want to find a single, optimal principle which maximises over all the items above. 
So, the maximality protocol above may be extended to the following, more general, one: 

(1)	 Maximise (a.) the ordinals, (b.) the cardinals and (c.) the power-set
(2)	 Search for syntheses of principles maximising over, at least, two, among (a., b., c.)

9  Steel (2014), p. 159. But notice: this is true only up to the level of second-order arithmetic, that is, up to 
the level of Π1

�
 sentences.

10  See Steel (2014), pp. 158–160. A theory T is consistency stronger than a theory U if T proves Con(U). It 
should be noted that the theories addressed by Steel need to have at least the same consistency strength as 
that of ZFC+‘there are infinitely many Woodin cardinals’.
11  On this, see Bagaria (2005), and Woodin (2001).
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(3)	 Search for a single, optimal, maximality principle maximising over all of (a., b., c.)

In the last few years, the bulk of HP’s research has been devoted to implementing the 
extended protocol above, and part of the job has also consisted in ascertaining whether a 
synthesis of, at least, any two among (a., b., c.) is consistent (something which one should 
not take for granted).

Now, when working on the ‘maximality protocol’, lots of maximality principles may be 
available for one to examine. Therefore, an essential aspect of this maximality programme 
will consist in being able to justifiably select principles which express some maximal prop-
erty (for instance, ordinal maximality) in slightly different ways. It is sometimes hard to 
decide among different principles based on purely intuitive grounds. Our task may be facil-
itated by defining certain further, practical, criteria, such as the ones below, which, as will 
be clear later on, emerge very naturally in the context of HP’s research:

Synthetic Features The first criterion looks very plausible and justified on the grounds of 
the extended maximality protocol: principles which maximise over more than one among 
(a., b., c.) in the maximality protocol, or which are more easily ‘amenable’ to a synthesis 
with other principles, are preferable over others which are not.

Inclusion of Parameters The use of parameters in a maximality principle just looks like a 
technical fact, which has nothing to do with the strength (let alone with the intuitive plau-
sibility) of a maximality principle. However, as we shall see, producing parameterised ver-
sions of maximality principles (or of any other set-theoretic principle, for that matter) allows 
set-theorists to convey more information about properties of sets in V which they may want 
to preserve. In particular, this strategy will be fundamental for our purpose of preserving 
cardinal maximality in maximality principles expressing power-set maximality. Thus, we 
stipulate that a maximality principle whose formulation also incorporates (certain) param-
eters is preferable over principles which do not contain (or contain fewer) parameters.

Nice Consequences This criterion partly corresponds to what is commonly known as an 
‘extrinsic argument’ for the justification of an axiom (principle),12 that is, the fact that such 
an axiom (principle) has many (and far-reaching) desirable consequences (for instance, it 
decides CH). Therefore, we stipulate that a axiom (principle) which has nice consequences 
is preferable over one which hasn’t.

In Sect. 6.2 we will briefly show how the combination of these criteria may lead us to 
isolate HP’s optimal maximality principles.

3 � Zermelo’s Conception of Sets and Width Actualism

As we have briefly hinted at, the question of how high the universe is, re-translates into the 
question of how long the ordinal sequence is, and the existence of different forms of RP, of 
different strength, which produce lengthenings of the sequence of ordinals, clearly shows 
that there is no immediate and trivial answer to this question.

On the other hand, the question of how wide the universe is looks a bit odd. After all, we 
seem to have a conception of the power-set operation, which should be able to provide us 

12  For the terminology and its meaning, see Gödel (1947) and Gödel (1964). For a discussion of the rel-
evance of ‘extrinsic’ arguments, see Maddy (1996).
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with an automatic indication of the width of the universe. However, the existence of inner 
models and forcing extensions of V makes us immediately realise that this is not the case 
either. In particular, we know that such techniques as forcing, if taken at face value, seem 
to allow us to add ‘new’ subsets to V.

As a consequence, V would seem to be ‘extendible’ somehow. But this isn’t inevitable. 
One may, on the contrary, think that V has to be construed as a fully determinate object, 
which means that no ‘real’ extensions of it may possibly be generated.

Therefore, two main ontological attitudes to V are possible:
Potentialism V is both ‘extendible’ in height and width.
Actualism V is not extendible: its height and width are fully determinate.

As is clear, both attitudes are problematic: for instance, the potentialist needs explain 
how it is possible to conceive of literally adding new sets to V, if V contains all of them. 
On the other hand, the actualist owes us an account of how, on her conception, one can 
make sense of extensions of the universe, such as those yielded by RP’s, or of models such 
as forcing extensions V[G] of V.

It should be noted that the meaning of ‘maximality’ and the justifiability of maximal-
ity principles varies significantly according to which of the two attitudes one adopts.13 An 
actualist will not be able to make sense of a literal construal of the idea of ‘maximising V’, 
insofar as she takes the universe to be already maximal. The potentialist, on the other hand, 
may also be at a loss with this idea, insofar as a straightforward consequence of his attitude 
is that there is no limit to the iterated production of new sets.

We will not provide a general examination of this complex issue here. Our aim is just 
to tackle the issue in connection with our need to express our maximality principles, for 
which we will adopt a mixed position which we may call width actualism, that is, the view 
that the cumulative hierarchy is a height-extendible object, whose width, on the contrary, 
cannot be extended.

Since, historically, this position was presented by Zermelo in his seminal Zermelo 
(1930) (with a view to showing that the axioms of set theory describe a fully determi-
nate set-theoretic reality), in what follows we will interchangeably use width actualism and 
‘Zermelian conception’.

Zermelo first proved that, for a second-order version of the axioms, ZFC2 , the power-set 
of V is fixed. More precisely, he proved that any two models of ZFC2 are either isomorphic, 
or one is isomorphic to a proper initial segment of the other. As a consequence, the width 
of V is fixed.14

Then, with regard to the height of V, Zermelo introduced the concept of a normal 
domain, a rank initial segment of V indexed by what he called a limit-number which is a 
model of ZFC2 . Now, the least such number must be the least strongly inaccessible cardi-
nal.15 But then consider the theory ZFC2 + ∃� , where � is the least inaccessible. Such a 
theory is not true in V� , where � is the least inaccessible, so the least normal domain which 
satisfies ZFC2+‘there is one inaccessible’ must be V� , where 𝜆 > 𝜅 is the least inaccessible 
after � . The iterated procedure yields a ‘tower’ of nested models of ZFC2 , and for any two 

15  Recall that an uncountable cardinal � is inaccessible if and only if: (1) � is regular (that is, its cofinality 
is � ) and (2) � is a limit cardinal (that is, it is not the successor of any cardinal). � is strongly inaccessible if, 
in addition, is: (3) strong limit, that is, if for all cardinals 𝜆 < 𝜅 , 2𝜆 < 𝜅.

13  The topic is fully explored by one of the authors and Neil Barton in Barton and Friedman (2020).
14  Zermelo’s proof is discussed (and defended) at length in Martin (2001). A philosophical discussion of 
Zermelo’s conception is also in Tait (1998). Also see the more recent Linnebo (2017), pp. 179–182.
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models V and V∗ such that V ⊂ V∗ , one has that the limit-number of V∗ is greater than the 
limit-number of V.

The collection of all V’s may also be described as a vertical multiverse, although Zer-
melo’s collection of stacked ‘normal domains’ is not, as is clear, a multiverse in the proper 
sense, nor is there any evidence that he construed the set-theoretic realm in a pluralist way: 
for him, set-theoretic reality was a fully determinate realm of objects, consisting of all sets 
in V; only, the concept ‘universe of all sets’ had, for him, an indefinite extension, insofar as 
what one might potentially take to be the collection of all sets at some level V� (where � is, 
as said, at least inaccessible) can always automatically be extended to a larger collection 
V�+1 , in which V� is just a set.16 Among other things, this construction also allows one to 
make sense of higher-order quantification: given a normal domain indexed by � , first-order 
variables will range over sets in V� , and second-order variables over all subsets of V� in 
V�+1.

Philosophically, it is not altogether clear that Zermelo’s conception adequately assuages 
one’s concerns about the referential indeterminacy of set-theoretic axioms. Certainly, for 
our more limited philosophical purposes, Zermelo’s conception offers some other advan-
tages, which can be summarised as follows: 

(1)	 While this view provides us with a fairly rigid structural insight into V, it does not 
prevent talk of extensions (at least, height extensions)

(2)	 The view can motivate extensions of reflection to the next order very easily, and thus, 
motivate strong extensions of RP

(3)	 The view is able to justify the non-relativity of fundamental set-theoretic concepts, 
such as that of well-foundedness, which is central to our conception of V17

However, Zermelo’s conception has one major disadvantage: width extensions are not 
available in this picture of V. This fact has two major consequences: (1) set-theorists’ intui-
tion that first-order models are width-extendible is, on this account, unexplainable; (2) the 
maximisation of the power-set cannot be carried out, if not ‘internally’, as Zermelo’s uni-
verse is already maximal, as far as its width is concerned.

Now, with regard to (2.), we will identify a way to express talk of width extensions 
within a non-width-extendible universe which allows one to make sense of width maximal-
ity principles, and, through this, we will also be able to address, if briefly, the more general 
philosophical issue expressed by (1.).

16  A different (and significantly more potentialist) construal of Zermelo’s normal-domain construction may 
be found in Hellman (1989) and Linnebo (2013), both of which take end-extensions of V to be interpretable 
in modal terms.
17  However, we do not claim the preferability of the second-order axioms of set theory. What we, rather, 
claim here is the view that the ordinary first-order iterative concept of set is constrained by (and even deriv-
able from) the second-order concept, in such a way as to imply that the first-order understanding of the 
extendibility of V should be seen as exclusively applying to the height of V itself.
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4 � Height Maximality: Reflection

Height maximality in terms of RP’s for the universe V can be intuitively formulated as 
follows:18

Reflection Any property which holds in V already holds in some rank initial segment V� of V.
In other words, V cannot be described as the unique initial segment of the universe sat-

isfying a given property. The strength of such reflection depends on what we take the word 
‘property’ to mean.19 If this just means ‘first-order property with set parameters’ then we 
obtain Lévy reflection, a form of reflection provable in ZFC.

A priori, there is no need to limit ourselves to first-order properties of V. But to express 
second-order properties of V we need to move beyond ZFC to Gödel-Bernays class theory 
GB. The latter has variables ranging over sets and also variables ranging over the larger 
collection of classes (collections of sets: note that every set is also a class). The ∈-relation 
applies between sets and classes and we impose the Comprehension Scheme for formulas 
with only set-quantifiers (but with both set and class variables). Thus, in GB we can quan-
tify over classes but cannot apply Comprehension to formulas containing such quantifiers. 
We also include Global Choice as an axiom, which says that there is a class function F 
such that F(x) is an element of x for every nonempty set x.

GB is conservative over ZFC. However it can be strengthened by adding second-order 
reflection axioms to it, such as:

Π1

m
-Reflection If �(R) is a Π1

m
 formula with a class variable R, then reflection for �(R) is 

the implication

where, on the right-hand-side, the set variables range over V� and the class variables over 
V�+1.

Even Π1

1
-Reflection for sentences (without the class variable R) is rather strong, as it 

implies the existence of an inaccessible cardinal. That is because the regularity of an ordi-
nal � is equivalent to the truth of a Π1

1
-sentence in (V� ,V�+1) . By adding parameters, we get 

stronger large cardinals such as Mahlo cardinals and weakly compact cardinals.
But just as ZFC is inadequate for second-order reflection, GB is inadequate for third-

order reflection.20 Of course, there is no reason to stop at third-order reflection, and in light 

𝜑(R) → (V𝛼 ,V𝛼+1) ⊨ 𝜑(R ∩ V𝛼)

18  See footnote 3.
19  Properties are often formulated using higher-order quantification. Let M be a class. We say that a varia-
ble x is 1-st order (or of order 1) if it ranges over elements of M. In general, we say that a variable R is n + 1

-st order (or of order n + 1 ), 0 < n < 𝜔 , if it ranges over Pn(M) , where Pn(M) denotes the result of applying 
the powerset operation n times to M. A formula � is Πn

m
 if it starts with a block of universal quantifiers of 

variables of order n + 1 , followed by existential quantification of variables of order n + 1 , and these blocks 
alternate at most m − 1 times; the rest of the formula can contain variables of order at most n + 1 , and quan-
tifications over variables of order at most n. Σn

m
 is obtained by switching the words universal and existential.

20  As an aside, it is worth noting that if formulated with third-order parameters, third-order reflection is in 
fact inconsistent! For instance, for a third-order parameter R , i.e. a collection of classes, one is tempted by 
the following natural-looking principle:

  Third-order Reflection If �(R) is true in (V ,R) , then for some � , 𝜑(R̄) is true in (V𝛼 , R̄) , where 
R̄ = {R ∩ V𝛼 ∣ R ∈ R}.

  But such a principle will fail if R consists of all bounded subsets of the ordinals (viewed as a collection of 
classes), and �(R) simply says that each element of R is bounded in the ordinals. Therefore when discuss-
ing third-order reflection it is customary to only allow second-order, and not third-order, parameters.
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of the Zermelian conception, it is meaningful to discuss ‘ �-th order’ reflection for ordinals 
� in lengthenings of V, i.e. in models V∗ which have V as a rank initial segment.

This naturally leads to the following form of higher-order reflection:

Extended Reflection Axiom (ERA) V satisfies the ERA if V has a lengthening V∗ , a model 
of ZFC, such that if � is first-order and �(A) holds in V∗ , where A is a subclass of V, then 
�(A ∩ V�) holds in V� for some pair of ordinals 𝛼 < 𝛽 in V.

This allows us to reflect properties (with second-order parameters) that are �-th order, 
for all ordinals � appearing in the least ZFC model lengthening of V. But, what is most 
important, the ERA embodies all of the classical forms of strong reflection and more.

However, clearly the ERA can easily be strengthened further, by requiring the lengthen-
ing V∗ of V to satisfy more than ZFC, such as ZFC + ‘there is a ZFC-lengthening of ZFC’. 
Indeed, it appears that there is no optimal form of reflection which can be described in 
terms of lengthenings of V, as we can always strengthen such a reflection principle fur-
ther, by requiring a lengthening V∗ of V in which the principle holds with reference only to 
lengthenings of V appearing in V∗.

How are we, then, to achieve an optimal reflection principle? HP’s answer is: through 
introducing the principle of #-generation. This asserts the existence of a special kind of set 
called a # (sharp) that ‘generates’ V through iteration. An optimal RP results, since this 
iteration also produces a closed unbounded class of indiscernibles for V, adequate for wit-
nessing any conceivable form of reflection. It is crucial that a # which generates V cannot 
be an element of V, otherwise such optimality would not be possible.

We cannot provide the full details of #-generation here, but some of its essential features 
may be addressed.21

First, imagine that V can be seen as being the last step in an elementary chain 
of universes (V𝜅i

∣ i < ∞) and we set V = V�∞
 . We can continue the construction of 

this chain ‘beyond’ V itself, producing an upwards elementary chain of universes 
V = V𝜅∞

≺ V𝜅∞+1
≺ V𝜅∞+2

≺ ⋯.
By elementarity, all of these universes will satisfy the same first-order sentences, but we 

want more. We want that any two pairs of universes ‘resemble’ each other, i.e. satisfy the 
same first-order sentences, and this can be extended to any pair of n-tuples of universes W

i⃗
 , 

where i⃗ = i0 < i1 < ⋯ < in−1 and W
j⃗
 , where j⃗ = j0 < j1 < ⋯ < jn−1 (to simplify our nota-

tion, we use the symbol Wi for V∗
�i

 ). But we want to impose an even higher level of resem-
blance, whereby all n-tuples of models satisfy the same second-order sentences and so on. 
In the end, the whole process can be seen as the construction of a series of embeddings 
�ij ∶ V → V  , leading to an indiscernibly-generated V. In more rigorous terms:

Definition 1  (Friedman, Honzik) V is indiscernibly-generated iff: (1) There is a continuous 
sequence 𝜅0 < 𝜅1 < ⋯ of length ∞ such that �∞ = ∞ and there are commuting elementary 
embeddings �ij ∶ V → V  , where �ij has critical point �i and sends �i to �j . (2) For any i ≤ j , 
any element of V is first-order definable in V from elements of the range of �ij together with 
�k ’s for k in the interval [i, j).

Indiscernible-generation has an equivalent but more useful formulation in terms of #
-generation, so we will use the term #-generation for this strong form of reflection. Now, 
although adequate for the Zermelian conception, we shall see, in Sect. 6, that #-generation 

21  See Section 2.2 of Friedman and Honzik (2016).
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needs to be slightly weakened, in order to fully suit width actualism, but this passage is far 
from being troublesome.22

One can show that #-generation implies all forms of reflection which are compatible 
with V = L,23 and, as a consequence of this, we believe that #-generation expresses the 
strongest possible amount of height reflection, and that it can legitimately claim to be the 
optimal principle expressing the height maximality of V. But why does it have to be so? 
Couldn’t there be other (stronger) forms of reflection which imply ¬(V = L) , and which 
also account for the existence of much stronger large cardinal hypotheses?

Mathematically, research in this direction has been conducted, and has, in particular, 
produced what we will call here embedding reflection.24 Let R̄ result from applying the 
inverse of an elementary embedding to R in Third-Order Reflection (see, again, foot-
note 20). This very strong RP even yields supercompact cardinals (which are inconsistent 
with V = L )! However, the use of and reference to arbitrary embeddings makes this prin-
ciple incompatible with our maximality protocol, which, as we have seen in Sect. 2, just 
addresses ‘general’ features of V, and not specific theories or model-theoretic techniques.

But there may be a more basic and cogent reason why any RP overtaking the V = L 
barrier may not be seen as intuitively plausible: ‘height maximality’ refers to the length of 
the ordinal sequence and therefore if V is height maximal, so is ‘its’ L, as L has the same 
ordinals as V. It follows that any height maximality principle, compatible with a maximal-
ity protocol like ours, which only takes into account intuitive properties of V, must be con-
sistent with V = L . As a consequence, the inevitable conclusion will be that any RP which 
contradicts V = L may not be viewed as a genuine height maximality principle.

5 � Width Maximality: V‑Logic, IMH

5.1 � The Strategy

As we have made clear already in Sect. 3, within the Zermelian conception, which incor-
porates height potentialism and width actualism, expressing principles of width maximality 
presents a real challenge. Whereas in the case of height maximality we made liberal use of 
lengthenings of V, no analogous notion of thickening (or outer model) of V is available, on 
that conception.

Now, since Friedman (2006), the programme has expressed width maximality in terms 
of the following principle:

The Inner Model Hypothesis (IMH) If a first-order sentence holds in an inner model of 
some outer model of V then it also holds in some definable inner model of V.

As is clear, the IMH is conceptually problematic for the Zermelian, as it explicitly refers 
to ‘outer models’ which are not available in Zermelo’s picture of V. However, if the IMH 
were referring not to the whole V, but just to some countable transitive model (which we 
will mostly indicate as ‘little-V’) of ZFC, then the IMH would make perfect sense even 
within the Zermelian conception.25

22  See Sect. 5.3.2
23  The proof is in Friedman and Honzik (2016), p. 11.
24  See the discussion of this in Section 2.1 of Friedman and Honzik (2016), and also Welch (2019).
25  Note that IMH is also known to consistently hold for some choice of little-V. See Friedman et al. (2008).
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However, recent developments, first introduced in Antos et al. (2015), Friedman (2016), 
and then further examined in Antos et al. (2020), provide a solution to this problem. The 
introduction of V-logic enables one to express first-order properties of arbitrary outer mod-
els (almost) internally within V, in the same way as first-order properties of set-forcing 
extensions of V can be internalised using the forcing relation. The word ‘almost’ occurs 
because this new ‘truth in outer models’ relation will not in general be first-order definable 
over V, but rather over a small lengthening (not thickening) of V called Hyp(V) (the least 
‘admissible set’ containing V as an element). As lengthenings are available to the Zermel-
ian, this enables her to express principles such as the IMH without loss of content.

Now, despite our motivated preference for the use of the Zermelian conception in HP, 
we shall also scrutinise a second approach to width maximality, which will construe the 
IMH as referring to some countable model ‘little-V’, whereas the first approach, the Zer-
melian conception, through the use of V-logic, only allows us to make sense of IMH ‘as 
if’ it were referring to the whole V. The reason for pursuing also the second approach is as 
follows. Although conceptually less justified, this approach is particularly convenient prac-
tically, as it allows us to reduce the study of the consequences of maximality principles to 
their consequences in countable transitive models.

5.2 � First Approach: V‑Logic and IMH

In order to discuss the first approach, we introduce the following analogy. As we said, the 
case of IMH is analogous to that of Martin’s Axiom (MA), a principle of set-forcing.26 
Several formulations of MA are available, in particular, MAℵ1

 asserts:

Outer-Model MAℵ1
 . Whenever V[G] is a generic extension of V by a partial order ℙ with 

the countable chain condition in V, and �(x) is a Σ1(P(�1)) formula (i.e. a Σ1-formula with 
a subset of �1 as parameter), if in V[G] there is a y such that �(y) holds, then there is also 
such a y in V.

Note the quantification in this definition over the (generic) outer models V[G] of V. How 
can the width actualist possibly make sense of this? The answer is of course via the defin-
able forcing relation:

Internal MAℵ1
 . Whenever ℙ is a partial order with the countable chain condition in V, and 

�(x) is a Σ1(P(�1)) formula, if there is a forcing condition p in ℙ forcing the existence of a 
y such that �(y) holds, then there is also such a y in V.

These two formulations of MAℵ1
 are equivalent when V is replaced by a countable tran-

sitive model ‘little-V’ of ZFC. When little-V is not countable (and possibly equal to V), we 
use the latter internal formulation to express MAℵ1

 . Thus, we convert a principle that makes 
reference to outer models of V to one which is internal, expressible within V.

Now, in order to use the same strategy to formulate width maximality principles, we 
will use what has been called V-logic, and the whole point of this logic is precisely that it 
provides a tool to enable us to do the analogous thing not for just generic outer models, but 
for outer models in general.

V-logic has a symbol for ∈ , a predicate symbol V̄  to denote V and a constant symbol x̄ 
to denote x for each set x. The proof relation ⊢V of V-logic begins with axioms that assert 
that x̄ belongs to V̄  for each set x, together with the usual axioms of first-order logic and all 

26  For further on this analogy, see Barton and Friedman (2020).
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quantifier-free sentences true in V. The rules of inference are modus ponens together with 
the infinitary rules:

•	 From 𝜑(ȳ) for all y in x, infer ∀y ∈ x̄𝜑(y).
•	 From 𝜑(x̄) for all x in V, infer ∀x ∈ V̄𝜑(x).

Proofs are then well-founded trees which can be shown to belong to Hyp(V), the least 
admissible set containing V as an element. Assuming height potentialism (which is avail-
able to the Zermelian conception), Hyp(V) makes full sense.27

As said, now we proceed in a way fully analogous to what we did above using the forc-
ing relation. Reconsider the IMH:

The Inner Model Hypothesis. If a first-order sentence holds in an inner model of some 
outer model of V then it also holds in some definable inner model of V.

We then formulate an internal version of this as follows:

The Internal Inner Model Hypothesis. If the theory in V-logic T� asserting that the first-
order sentence � holds in an inner model of some outer model of V̄  is consistent in V-logic, 
then there is a definable inner model of V in which � holds.

The ‘internal’ IMH is expressible as a first-order property of Hyp(V), using the fact that 
the consistency of T� in V-logic is equivalent to saying that there is no V-logic proof in 
Hyp(V) of a contradiction using the axioms of T� . And as in the case of MAℵ1

 , the two 
formulations of the IMH, the one using outer models and the internal one, are equivalent 
when V is replaced by a countable transitive model little-V of ZFC.

Thus, V-logic opens the way to expressing a wide range of width maximality princi-
ples in the Zermelian (width actualist) context. With rare exceptions, these principles are 
formalisable internally in Hyp(M) for arbitrary transitive ZFC models M, and not just for 
countable ones.

5.3 � Second Approach: Reduction to the Hyperuniverse

5.3.1 � Reduction of IMH

As promised, we shall now deal with the second approach, where V is taken to be a count-
able transitive model little-V. Moreover, in this section we show that we can reduce our 
study of width maximality, and to some extent of height maximality, to a study of count-
able transitive models. As the collection of countable transitive models has been called 
‘hyperuniverse’, we are led to reduce the study of the consequences of maximality princi-
ples to their consequences in the hyperuniverse.

First we illustrate the reduction to the hyperuniverse with the specific example of the 
IMH. Suppose that we formulate the IMH as above, using V-logic, and want to know what 
first-order consequences it has.

Fact 2  Suppose that a first-order sentence � holds in all countable models of the IMH. 
Then it holds in all models of the IMH.

27  V-logic is an extension (reformulation) of Barwise’s �-logic, for which see Barwise (1975).
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This is for the following reason: suppose that � fails in some model M of the IMH, 
where M may be uncountable. Now notice that the IMH is first-order expressible in 
Hyp(M), the least admissible lengthening of M. But then, apply the downward Löwenheim-
Skolem theorem to obtain a countable little-V which satisfies the IMH, as verified in its 
associated little-Hyp(V), yet fails to satisfy � . But this is a contradiction, as by hypothesis � 
must hold in all countable models of the IMH.

So without loss of generality, when looking at first-order consequences of width maxi-
mality principles as formulated in V-logic, we can restrict ourselves to countable little-V’s. 
The advantage of this is that, then, we can dispense with little-V-logic, as by the Complete-
ness Theorem for little-V-logic, consistent theories in little-V-logic do have models, thanks 
to the countability of little-V.28 Thus, for a countable little-V, the IMH simply says:

Inner Model Hypothesis for little-V’s. Suppose that a first-order sentence holds in an 
inner model of an outer model of little-V. Then it holds in a definable inner model of 
little-V.

But, if V is taken to be little-V, then V can really be ‘thickened’, which means that the 
Zermelian conception collapses to a fully potentialist conception, wherein both height and 
width of V are not fixed. Alternatively said, the Zermelian and the fully potentialist ver-
sions of the IMH coincide on countable models.

5.3.2 � Reduction of #‑Generated V: #‑Generation Revisited

As far as the case of #-generation is concerned, its reduction to the hyperuniverse is not so 
obvious, and we shall see that the choice of working either within a Zermelian conception 
or within a fully potentialist perspective makes a big difference.

First, consider the following encouraging analogue for #-generation of our earlier reduc-
tion claim for the IMH, which we state here without proof.

Fact 3  Suppose that a first-order sentence � holds in all countable models which are #
-generated. Then it holds in all models which are #-generated.

Now, the main difficulty, we briefly touched on in §4,29 is this: how do we express #
-generation from a width actualist perspective? As explained in Sect. 4, to produce a gen-
erating # for V we have to produce a set of rank less than Ord(V) which does not belong 
to V. So, we now have to face one further difficulty for the width actualist, as far as height 
maximality is concerned and, at this point, we need to say a bit more about # ’s and models 
generated by them.

A pre-# is a structure (N, U) where U measures the subsets in N of the largest cardinal 
� of N, meeting certain first-order conditions; it is a # if in addition it is iterable, i.e. for 
any ordinal � , if we take iterated ultrapowers of (N, U) for � steps, then, it remains well-
founded. V is #-generated if it results as the union of the lower parts of the �-iterates of 
some # as � ranges over Ord(V). But notice that to express the iterability of a generating # 
for V we are forced to consider theories T� formulated in L�(V)-logic for arbitrary (Gödel-) 
lengthenings L�(V) of V: T� asserts that V is generated by a pre-# which is �-iterable, i.e. 

28  The completeness result for little-V-logic is equivalent to the completeness result for countable frag-
ments of Barwise’s �-logic. See Barwise (1975), p. 89.
29  See the paragraph immediately below Definition 1.
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iterable for �-steps. Thus, we have no fixed theory that captures #-generation, only a tower 
of theories T� (as � ranges over ordinals past the height of V) which capture closer and 
closer approximations to #-generation.

Therefore, in order to overcome these difficulties, we need to introduce another form of 
#-generated V, that is, weakly #-generated V.

Definition 4  V is weakly #-generated if for each ordinal � past the height of V, the theory 
T� which expresses the existence of an �-iterable pre-# which generates V is consistent.

Weak #-generation is meaningful for a width actualist who is also a height potentialist 
(that is, a Zermelian), as it is expressed entirely in terms of theories internal to lengthen-
ings of V, and so weak #-generation is precisely the form of height maximality which suits 
the Zermelian conception.

Now, a countable little-V is weakly #-generated if it is �-generated for each countable 
ordinal � (where the witnessing pre-# may depend on � ). Little-V is #-generated iff it is �
-generated when � = �1 iff it is �-generated for all ordinals � . Finally, we have the follow-
ing reduction to countable little-V’s:

Fact 5  Suppose that a first-order sentence � holds in all countable little-V’s which are 
weakly #-generated, and this is provable in ZFC. Then � holds in all models which are 
weakly #-generated.

To summarise: if we are fully potentialist, then we can comfortably work with full #
-generation as our principle of height maximality. But, if we are width actualists (Zermel-
ians), we instead work with weak #-generation, expressed in terms of theories inside Gödel 
lengthenings L�(V) of V. Weak #-generation is sufficient to maximise the height of the 
universe. And properly formulated, the reduction to the hyperuniverse also applies to weak 
#-generation: to infer that a first-order statement follows from weak #-generation, it suf-
fices to show that in ZFC one can prove that it holds in all weakly #-generated countable 
models.30

In what follows we will primarily work with #-generation, as at present the mathemat-
ics of weak #-generation is poorly understood. Indeed, as we shall see in the next section, a 
synthesis of #-generation with the IMH is consistent, but this remains an open problem for 
weak #-generation.

6 � Synthesis and Optimality

Let’s take stock. In Sects. 4 and  5, we have addressed (1a.) and (1c.) in the maximality 
protocol, that is, we have formulated maximality principles which maximise over the ordi-
nals and the power-set. So far, we have not explicitly dealt with (1b.), cardinal maximality. 
The reason, as already noticed in Sect. 2, is that, once one ‘fixes’ the ordinals, then one also 

30  Weak #-generation is indeed strictly weaker than #-generation for countable models. Suppose that 0# 
exists and choose � to be least, so that � is the �-th Silver indiscernible ( � is countable). Now let g be 
generic over L for Lévy collapsing � to � . Then by Lévy absoluteness, L� is weakly #-generated in L[g], but 
it cannot be #-generated in L[g] as 0# does not belong to a generic extension of L.
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maximises over the cardinals. However, there is another kind of cardinal maximality we 
will have to discuss here, which consists in ‘fixing’ the cardinals in outer models addressed 
by power-set maximality principles.

Afterwards, to fufil point (2.) and (3.) of the maximality protocol, we will proceed to 
examine syntheses of the maximality principles expressed in Sects. 4 and 5, which, as said, 
will also incorporate cardinal maximality. Moreover, in light of the reduction to the hype-
runiverse ( ℍ ), we will see that maximality principles such as #-generation and the IMH 
can, without loss of generality, be expressed as principles about countable models, i.e. as 
properties of members of ℍ expressed through quantification over ℍ . Henceforward, we 
refer to them, and to their variants, as ℍ-principles.

6.1 � Synthesis of ℍ‑Principles and Cardinal Maximality

Arguably, the most important synthesis we may want to formulate is the synthesis of the ℍ
-principle of #-generation, expressing height maximality, with ℍ-principles which express 
width maximality. The first example of such a synthesis is the IMH# , which asserts the 
IMH for height-maximal universes:

Definition 6  (IMH# ) M satisfies the IMH# if M is #-generated and whenever a first-order 
sentence holds in a #-generated outer model of M, it also holds in a definable inner model 
of M.

IMH# captures both height maximality and aspects of width maximality simultaneously. 
But the development of ‘synthetic’ ℍ-principles does not stop here. At this point, one intro-
duces further logical constraints, which allow one to also incorporate the kind of cardinal 
maximality described at the beginning of this section, as follows.

An absolute parameter is a set p which is uniformly definable over all outer models of V 
which ‘respect’ them in the sense that they preserve cardinals up to and including the cardi-
nality of the transitive closure of p. The SIMH (Strong IMH) is the IMH for sentences with 
absolute parameters relative to outer models which respect them:

Definition 7  (SIMH) If a sentence with absolute parameters holds in an outer model which 
respects those parameters then it holds in a definable inner model.

Most important for our goal of incorporating cardinal maximality is the following 
definition:

Definition 8  (Cardinal Absoluteness) A cardinal-absolute parameter is a set p which is 
uniformly definable over all cardinal-preserving extensions of V.

Now, CPIMH asserts the following:

Definition 9  (CPIMH) If a sentence with cardinal-absolute parameters holds in a cardinal-
preserving outer model of V it also holds in a definable inner model of V.

Restricting SIMH and CPIMH to #-generated universes yields corresponding principles 
SIMH# and CPIMH#.
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More recent work develops further ℍ-principles, such as Width Reflection (for each ordi-
nal � there is an amenable elementary embedding of an inner model into V with critical 
point greater than � ) and its associated analogue of #-generation for width called Width 
Indiscernibility and Omniscience (the first-order definability of satisfaction across outer 
models), but all of these need further investigation to ultimately be viewed as plausible 
maximality principles.31

6.2 � Optimality

We, finally, proceed to briefly address the issue of optimality, also based on the ‘practical’ 
criteria formulated in Sect. 2.

First, let us summarise all the work done so far, in view of HP’s maximality programme. 
As far as point (1a.), the maximisation of the ordinals, is concerned, we may say that this is 
expressed by #-generation, as discussed in Sect. 4, whereas point (1c.)., the maximisation 
of the power-set, is expressed by the IMH and its variants, in the way suggested in Sect. 5. 
Now, as far as point (1b.), cardinal maximality, is concerned, we have seen that the latter 
can be dealt with by fulfilling (1a.) and (1c.), and by incorporating cardinal parameters in 
versions of IMH and #-generated V.

In order to select our optimal maximality principle, we proceed as follows. First, we 
choose the strongest principles, among those maximising over one item of the maximality 
protocol. So, we choose SIMH for power-set maximality and (strong) #-generated V for 
ordinal maximality, and produce SIMH# . Finally, we also add cardinal-absolute parameters 
to SIMH# , which leads to SIMH#(CP). This principle contains all three forms of maximal-
ity. Now, is it justified on the grounds of the criteria we have put forward in Sect. 2? We 
believe so. SIMH#(CP) is certainly synthetic, and, in addition, contains parameters. But 
SIMH#(CP) also has nice consequences, as it has been shown that:

Fact 10  Under SIMH#(CP), CH is false.

Therefore, we may finally state that SIMH#(CP) should be seen, for the time being, and 
in the light of the justificatory strategy outlined in Sect.  2, as HP’s optimal maximality 
principle.

There is one big problem with this principle, though, that is, the fact that we presently do 
not know whether it is consistent (although there are hints that it may be so), so, for now, we 
have to be very cautious about viewing it as the ultimate maximality principle for V.

7 � Concluding Remarks: The Significance of Maximality 
for the Foundations of Set Theory

After having provided a comprehensive overview of HP’s maximality programme, we want 
to briefly address one last philosophical issue relating to the significance of maximality 
principles for the whole set-theoretic undertaking.

One might wonder whether selecting ‘optimal’ maximality principles will imply 
that we will ultimately be able to also describe an ‘optimal’ picture of V. There are two 

31  For further details on all of these, see Friedman (2016) and Friedman and Honzik (2016).
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considerations to make concerning this point, but first we would like to set forth what alter-
native options are available for us to take into account concerning set-theoretic ontology.

Pluralism (or multiversism) is the view that there are multiple universes of sets, whereas 
universism (or monism), is the view that there is a single structure incorporating all the 
(unique) truths about sets.32 Now, we want to draw attention to the following fact. Even if 
we were able to single out some optimal principle P, it may still turn out that P could be 
compatible with a wide range of universes, and, thus, compatible with a pluralist concep-
tion of set theory.33

Moreover, finding optimal maximality principles might not necessarily be seen as lead-
ing to a resolution of the monism/pluralism dichotomy for a different reason. Linnebo has 
recently come up with an instructive case, where a set-theoretic principle is judged to be 
sufficiently justified to be accepted as a new axiom. There may be two equally acceptable 
interpretations of this fact: either the ‘discovery’ of such an axiom was the result of set-
theorists’ progressive sharpening of their grasp of V, something which would lend support 
to universism, or, on the contrary, it was the outcome of the progressive sharpening of their 
grasp of one (among many) set-theoretic structures (or of one among many ‘concepts of 
set’) something which would lend support to pluralism. Linnebo concludes:

So long as both interpretations are available, mathematical practice can proceed 
unaffected by the question of whether monism or pluralism is right. These reflections 
suggest that the question of pluralism matters less to mathematical practice than one 
might initially have thought. After all, monists and pluralists may agree that there is 
a plethora of mathematical structures that are worth exploring, [...]. Which of these 
structures corresponds to the ‘real’ sets may not be so important. (Linnebo 2017, p. 
182)

It should be noted that the HP’s construal of pluralism is slightly different from that sug-
gested by Linnebo. In particular, the HP construes the relationship between ‘concepts 
of set’ and ‘structures’ as follows: there is just one concept of set, the maximal iterative 
concept, which is sufficient to justify and motivate the ‘construction’ of V, yet different 
‘pictures of V’ (arising from ‘extending’ V) are available, which instantiate this concept. 
However, Linnebo’s considerations also apply to the HP’s picture, insofar as the identifi-
cation of an optimal maximality principle P may either be construed as arising from the 
progressive sharpening of the grasp of the unique concept of set (and unique universe satis-
fying it), or from the progressive sharpening of the grasp of one structure among all those 
satisfying this concept and P.

32  It should be noted that, although the hyperuniverse, introduced in Sect. 5.3, may be construed as a col-
lection of mutually alternative ‘universes’ of set theory, and may thus qualify as a multiverse, in this paper 
we do not automatically subscribe to, or wish to defend, a multiversist view, since, as also explained in the 
present section, several ontological conceptions are compatible with HP’s maximality protocol. In fact, as 
stated in Sect. 5, the ‘reduction to the hyperuniverse’ can just be seen as a convenient way to address the 
expression of maximality principles semantically, rather than as a way of advocating the actual existence of 
a collection of mutually alternative universes of set theory. We thank one anonymous referee for prompting 
us to clarify this point.
33  For instance, take P to be the combination of a well-known axiom such as V = L and #-generation. Sup-
pose, however implausible it may seem, that one chose P as the ultimate, optimal maximality principle. One 
would, then, realise that such a principle would still be compatible with many universes of the form L� , 
where � is a limit of Silver indiscernibles. Notice, though, that the identification of P as an optimal maxi-
mality principle would, at least, narrow the range of universes of interest in the multiverse, as presumably 
only some universes will satisfy it.

Author's personal copy



	 S.-D. Friedman, C. Ternullo 

1 3

To sum up, the ontological interpretation of the discovery of optimal principles may not 
be so straightforward. This fact, in turn, may not have too much significance for the search 
for the ultimate maximality principles: overall, optimality expresses epistemological, rather 
than ontological concerns, which means that a principle may be chosen (and adopted) not 
because it corresponds to, or provides us with some nice and unified picture of, set-theo-
retic ontology, but because it best encapsulates the relevant features of the concept of set, 
as standardly interpreted.

We feel optimistic in this respect: further ‘experimenting’ with maximality principles, 
and with their properties, within the HP, may give us optimal maximality principles which 
will also be seen as capable of settling many of the most important open problems in set 
theory.
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